Connect with us

Featured

Battery revolution upon us

Published

on

Although the evolution of the lithium-ion battery has been slow in the past few years, there are some new opportunities and potential markets in the industry for companies to take advantage of, writes DR XIAOXI HE, Technology Analyst, IDTechEx.

Many interests have been raised within the battery business in 2015 through a number of activities: the launch of Tesla’s Powerwall with low prices supported by the capability of Gigafactory, Apple’s patent relating to charging and managing power in a device with solid-state batteries, LG Chem’s opening of a mega battery plant in Nanjing, Bosch’s purchase of polymer solid-state battery company Seeo, etc. Not to mention the tremendous number of investment, acquisitions, partnerships and joint ventures.

At the same time, new battery technologies are appearing continuously with descriptions like “doubled performance”, “charged in a few minutes”, “cost reduction of more than 70%”, making the public even more confused about the real breakthroughs. However, one can provide a clear perspective of emerging technologies, new opportunities and potential markets in the battery industry.

unnamed

Opportunities can be found from different dimensions

Since the first introduction by Sony in the 1990s, lithium-ion batteries have become one of the most familiar and common battery technologies in our life. The involving technologies are relatively mature and the facilities are in place. With the expansion of existing manufacturing plants by battery giants such as Samsung SDI, LG Chem and Panasonic, economy of scale will be further achieved. However, with so many advantages, the improvement of lithium-ion batteries is slow compared with other electronic components, both in terms of performance and cost reduction. The liquid electrolyte used in the traditional lithium-ion batteries may cause serious safety concerns. On the other hand, with the development of wearable devices, printed electronics, Internet of Things (IoT), robotics and electric vehicles, batteries with more features, more powerful performances and lower costs are required. Those factors have motivated players to find bigger opportunities.

unnamed-1

Therefore, the battery industry is explored based on a number of different dimensions. Interests have been aroused in:

      Thin-film batteries (based on thickness)

      Micro-batteries and large-area batteries (based on size)

      Flexible batteries (based on mechanical properties)

      Special-shape batteries (based on form factors)

      Printed batteries (based on manufacturing methods)

      Solid-state, lithium anode, silicon anode batteries (based on technologies)

      Energy storage system (ESS) and electric vehicle (EV) applications (based on applications)

All the areas listed above indicate new opportunities. Those areas may be influenced by each other and may have some overlap. For instance, batteries with better technologies may be used in ESS and EV applications, providing better safety and better performance. A thin-film battery is also flexible, and can be made by printing, or based on all solid-state components, or be very small. Market growth of these areas is affected by the costs. Except the last one (ESS and EV applications), the others are also limited significantly by technology maturity. The IDTechEx Research report “Flexible, Printed and Thin Film Batteries 2016-2026: Technologies, Markets, Players” focuses on the first 4 areas as well as solid-state batteries with these features.

Further cost reduction may not rely on technology improvement

Battery technology improvement is based on electrochemical restriction and it is difficult to have sudden significant breakthroughs. In addition, a practical battery is a combination of many considerations including, but not limited to, energy density, power density, lifetime, safety and cost. Many press releases may emphasis one or several improvements but avoid talking about the others. Most existing commercial batteries are already based on relatively mature, proven technologies, but some of them are not well-known. Examples include thin-film solid-state batteries and printed batteries. As the battery development is a long and difficult process, future battery cost reduction are mainly rely on economy of scale, little on technology improvement.

Regulations and policies play a significant role in large deployment

In May 2013 the German market incentive program for battery storage systems was introduced which changed the residential battery installation structure immediately, with 2,700 installations to enjoy the incentives in 2013, jumping to 13,100 by 2015. Also, China’s decision to remove subsidies for nickel manganese cobalt (NMC) batteries for electric buses also crucially influenced this industry. It indicated that for ESS or EV applications, self-sustainability has not been fully achieved and therefore policy changes can affect them greatly.

Batteries with new technologies will be tried in small gadgets first

Large devices or systems generally require high reliability and safety. Therefore, new battery technologies will tend not to be applied in them initially or in short-term period. Toyota, for example said in January of 2014 that it was working on solid-state battery technologies for cars, but the firm did not expect to have a product within a decade.

Apple also paid lots of attention in solid-state batteries, but it is focusing on portable electronics /wearables /MEMs applications. As early as 2013, the US Patent & Trademark Office already published a patent application from Apple that revealed charging techniques for solid-state batteries. In early 2014, Apple bought all the patents from Infinite Power Solutions after it stopped trading, a company previous working on solid-state thin-film batteries. In November 2015, Apple published another patent related to thin-film solid-state batteries.

In solid-state lithium ion batteries, both the electrodes and the electrolyte are solid-state. Solid-state electrolyte normally behaves as the separator as well. It is safer, especially for those with inorganic solid electrolyte (all organic electrolytes are flammable, no matter whether solid or liquid). Solid-state electrolytes allow scaling due to the elimination of certain components (e.g. separator and casing). Therefore, they can potentially be made with a higher energy density. In addition, they are more resistant to changes in temperature and physical damages occurred during usage. Therefore they can handle more charge/discharge cycles before degradation, promising a longer life time. Due to the flexibility of the casing and without the limitation of liquid electrolyte, solid-state batteries can be made into different form factors, sizes and shapes.

However, the ionic conductivities of solid-state batteries at room temperatures are generally low. In addition, they usually have high internal resistance due to the unstable solid electrolyte interface (SEI). Most solid-state batteries suffer from low C-rate and may not be able work at room temperature. Examples include 3000 taxis in France with solid-state batteries working at elevated temperatures. Also, solid-state batteries are much more expensive. The current low C-rate, low power makes them suitable to be applied in small devices earlier.

Thinness, flexibility and printed possibility will be the most addressed features

As new battery technologies will be applied in small electronic gadgets first, new features beyond traditional capabilities such as thinness, flexibility and printed Possibility will be addressed. According to IDTechEx Research in the report “Flexible, Printed and Thin Film Batteries 2016-2026: Technologies, Markets, Players”, there are other technologies that can make thin, flexible and printed batteries besides solid-state batteries, such as printed carbon zinc batteries and thin lithium-ion pouch batteries.

The total market of thin, flexible and printed batteries will reach $471 million by 2026. Most of those batteries are for small or mediate power devices and focus on form factor, thickness, size and manufacturing aspects, but they share technologies that can be used for other applications. Similar to the development roadmap of traditional lithium-ion batteries from consumer electronics to EV and ESS, batteries with new technologies may target consumer electronics as the initial entry. Even bigger opportunities for new technologies will come after approval in these applications.

For traditional battery technologies, demand is further created in the EV and ESS sectors as the growth in consumer electronics is approaching a plateau. Cost reduction is the key.

Featured

Password managers don’t protect you from hackers

Using a password manager to protect yourself online? Research reveals serious weaknesses…

Published

on

Top password manager products have fundamental flaws that expose the data they are designed to protect, rendering them no more secure than saving passwords in a text file, according to a new study by researchers at Independent Security Evaluators (ISE).

“100 percent of the products that ISE analyzed failed to provide the security to safeguard a user’s passwords as advertised,” says ISE CEO Stephen Bono. “Although password managers provide some utility for storing login/passwords and limit password reuse, these applications are a vulnerable target for the mass collection of this data through malicious hacking campaigns.”

In the new report titled “Under the Hood of Secrets Management,” ISE researchers revealed serious weaknesses with top password managers: 1Password, Dashlane, KeePass and LastPass.  ISE examined the underlying functionality of these products on Windows 10 to understand how users’ secrets are stored even when the password manager is locked. More than 60 million individuals 93,000 businesses worldwide rely on password managers. Click here for a copy of the report.

Password managers are marketed as a solution to eliminate the security risks of storing passwords or secrets for applications and browsers in plain text documents. Having previously examined these and other password managers, ISE researchers expected an improved level of security standards preventing malicious credential extraction. Instead ISE found just the opposite. 

Click here to read the findings from the report.

Previous Page1 of 2

Continue Reading

Featured

MWC: Next generation of inflight connectivity to be unveiled

Published

on

Next week at Mobile World Congress, the Seamless Air Alliance will reveal progress on its mission towards enabling the next generation of inflight connectivity. This follows a significant start for the Alliance, which has seen membership increase five-fold since the first meeting in June of last year. The Alliance has a new research laboratory setup and continues progress through its three working groups, writing specifications for the technology, requirements, and operations.

These developments represent a huge leap towards the goal of making connectivity as easy and enjoyable in the skies as it is on the ground. Appearing as part of the Airbus stand (Hall 6, stand 6G34), the Seamless Air Alliance will reveal specification topics that have been completed and published to its membership.

“The passenger experience with inflight connectivity remains one of the great technology challenges. From Day One we have been determined to deliver on our mission to bring industries and technologies together to make the inflight internet experience simple to access and a delight to use,” said the Alliance’s Chief Executive Officer, Jack Mandala.

“I have been tremendously encouraged by the enthusiastic and committed response we have seen and the widening areas of expertise we can call upon as more and more companies and organisations continue to join us,” he added.

Announced during MWC 2018, the Seamless Air Alliance has since grown to twenty-three membercompanies with more than one-hundred key personnel from across the membership participating in its three working groups, with numbers continuing to increase.

The Seamless Air Alliance was created by founding members Airbus, Airtel, Delta Air Lines, OneWeb and Sprint, and quickly joined by Air France KLM, Aeromexico, and GOL Linhas Aereas Inteligentes and global technology leaders including Astronics, Collins Aerospace, Comtech, Cyient, iDirect, Inmarsat, Intelsat, Latecoere, Nokia, and Panasonic. 

Today, the Alliance is pleased to announce five additional new members: Adaptive Channel, Etihad Airways, GlobalReach Technology, Safran, and SITAONAIR.

“We are extremely pleased to have these companies join and be a part of the companies driving the next generation of connectivity.” said Mr Mandala.

The Seamless Air Alliance will enable travelers boarding any flight, on any airline, anywhere in the world, to use their own devices to automatically connect to the Internet with no complicated login process nor paywall to scramble over.

The Alliance is also announcing the release of a new research study on the economic benefit of standardization on the inflight connectivity market at Mobile World Congress. This report is available for download at https://www.seamlessalliance.com/publications/

The Alliance is moving rapidly towards an expected demonstration of the technology later in 2019 and anticipates massive interest in Barcelona from the whole communications eco-system.

Continue Reading

Trending

Copyright © 2018 World Wide Worx