Connect with us

Cars

Kia launches plug-in hybrid

Published

on

KIA Motors recently unveiled a new plug-in hybrid, the Niro, at the Geneva International Motor Show. The new derivative combines high versatility and crossover design appeal with maximum fuel efficiency from its new plug-in hybrid powertrain.

The Niro Plug-in Hybrid will go on sale across Europe during Q3 2017, pairing an economical 1.6-litre GDI (gasoline direct injection) engine with a 8.9kWh high-capacity lithium-polymer battery pack. The latest addition to KIA’s hybrid crossover range substantially reduces emissions over the more conventional Niro hybrid – engineers are targeting CO2 emissions below 30 g/km (combined, New European Driving Cycle) and a zero-emissions pure-electric driving range of over 55 kilometres. Final electric range and CO2 emissions figures will be published closer to the car’s on-sale date.

Michael Cole, Chief Operating Officer, KIA Motors Europe, commented: “Annual sales of plug-in hybrid models in Europe are expected to grow to more than 600,000 units by the end of 2023, while the crossover market is also forecast to expand in the coming years. There is a clear demand from customers for a vehicle which combines the practicality and ‘cool’ image of a compact crossover with the ultra-low emissions of an advanced plug-in powertrain. The Niro Plug-in Hybrid will be the only car on the market to offer this combination.”

“The Niro Plug-in Hybrid is one of the latest low-emissions cars from KIA which will help the company achieve its global target for 2020 – to improve fuel efficiency by 25% compared with 2014 levels.”

The Niro Plug-in Hybrid is one of two low-emissions vehicles unveiled by KIA at the Geneva International Motor Show, alongside the new Optima Sportswagon Plug-in Hybrid.

Engineers targeting 55-kilometre plus pure-electric range and sub 30 g/km CO2

The Niro Plug-in Hybrid offers buyers a convincing alternative to compact crossovers powered by traditional petrol or diesel internal combustion engines. The car gives owners the opportunity to complete short journeys and daily commutes with zero emissions and lower running costs.

At the heart of the Niro’s new plug-in powertrain is a high-capacity 8.9 kWh lithium-polymer battery pack, growing in size from the 1.56 kWh battery pack found in KIA’s hybrid crossover. The new battery pack is paired with a more powerful 44.5 kW electric motor (offering almost 40% more power, up from 32 kW) compared to the Hybrid model.

The battery and electric motor are paired with the Niro’s efficient 1.6-litre ‘Kappa’ four-cylinder GDI engine, which independently produces 77 kW and 147 Nm torque. The total power and torque output for the Niro Plug-in Hybrid’s powertrain will be 104 kW and 265 Nm, enabling the new model to accelerate from 0 to 100 km/h in 10.8 seconds (0.7 seconds quicker than the standard Niro).

With greater capacity and electric power output, KIA engineers are targeting a pure-electric driving range of over 55 km. While the standard Niro hybrid emits just 88 g/km of CO2 in its most efficient configuration, emissions for the Plug-in Hybrid model will drop significantly, to below 30 g/km (combined, New European Driving Cycle).

Power is applied to the road through the Niro’s six-speed double-clutch transmission (6DCT), allowing drivers to shift gears for themselves for a more immediate, more entertaining drive than other hybrid models equipped with a traditional electronic continuously-variable transmission (e-CVT). The 6DCT is paired with a Transmission-Mounted Electric Device (TMED), which allows the full output of both the engine and electric motor to be transferred in parallel through the transmission, with a minimal loss of energy. This differs from the power-split systems typical of an e-CVT hybrid, which converts a portion of engine output for delivery through the electric motor, resulting in power losses from energy conversion.

Energy-harvesting and predictive driving assistant technologies

The Niro Plug-in Hybrid provides owners with a range of technologies to enhance battery efficiency and improve the car’s range – in zero-emissions electric mode, and when the 1.6-litre engine is in use.

Regenerative braking technology allows the Niro to harvest kinetic energy and recharge the battery pack while coasting or braking, while a new Eco Driving Assistant System (Eco DAS) provides drivers with intelligent guidance on how to drive more efficiently under current conditions. Eco DAS includes Coasting Guide Control (CGC) and Predictive Energy Control (PEC), enabling drivers to maximise fuel mileage by suggesting when to coast or brake.

CGC alerts drivers as to the best time to lift off the accelerator and coast towards a junction, allowing the battery to regenerate under engine deceleration. Operating at certain speeds when a navigation destination is set, it alerts drivers when to coast via a small icon in the instrument cluster as well as an unobtrusive audible warning.

PEC uses the navigation and cruise control systems to anticipate topographical changes – inclines and bends – in the route ahead. It uses this information to determine when best to recharge the battery pack, or to direct stored energy to the wheels and actively manage energy flow accordingly. For example, if it detects an uphill incline coming up, the system may choose to retain more electrical energy to provide greater battery assistance climbing the hill. Conversely, if PEC detects an upcoming opportunity to coast downhill, it may choose to discharge some electrical energy ahead of time, enhancing short-term engine efficiency in the knowledge that it can recharge soon.

Niro retains crossover versatility with efficient powertrain packaging

The KIA Niro was engineered from the very start to accommodate a specific range of hybrid powertrains. The introduction of a plug-in hybrid powertrain therefore has minimal effect on packaging and versatility.

The Niro Plug-in Hybrid’s high-capacity battery pack is located beneath the floor of the 324 litre (VDA) boot and beneath the rear seat bench. This allows the new derivative to offer buyers greater practicality than other C-segment plug-in hybrid hatchback models, while space in the cabin of the Niro remains unaffected.

There is a dedicated space beneath the boot floor to store the Niro Plug-in Hybrid’s charging cable when not in use.

The Niro Plug-in Hybrid will follow its Hybrid sibling in offering an optional Towing Pack – rare amongst cars in the hybrid class – allowing owners to tow braked loads of up to 1,300 kg.

Plug-in Hybrid design and in-car safety and convenience technologies

The exterior and interior design of the KIA Niro Plug-in Hybrid has been adapted to differentiate the car from the existing Niro hybrid.

On the outside of the car, the Niro Plug-in Hybrid features a new satin chrome grille surround, as well as special chrome brightwork with a clean metallic-blue finish, applied to thin ‘blades’ in the front and rear bumpers. The Plug-in Hybrid model is available with 16-inch alloy wheels, engineered to reduce wind resistance, as well as new full-LED headlamps and dedicated ‘Eco Plug-in’ badging.

The interior of the Niro Plug-in Hybrid is upholstered in single-tone black leather, or two-tone light grey and black leather, finished with blue stitching, as well as a new blue surround for the dashboard air vents. The new derivative features a new 7.0-inch full-TFT driver instrument cluster, displaying key information about the powertrain – such as the battery’s state of charge – as well as offering suggestions for a more efficient driving style.

The dashboard is fitted with KIA’s latest 8-inch touchscreen infotainment and navigation system, configured for the Plug-in Hybrid model to display current electric-only range and the location of nearby charging stations. The infotainment system provides owners with maximum smartphone integration, offering Android Auto™ and Apple CarPlay™. KIA Connected Services powered by TomTomTM provides live traffic updates, weather forecasts and, in certain markets, speed camera alerts. The new Plug-in Hybrid model continues to offer buyers the Niro’s wireless smartphone charger, letting users charge their mobile devices on the move. A powerful JBL® premium sound system is also available, with Clari-Fi technology to restore the original sound of music that may be lost during the digital audio compression process.

The Niro Plug-in Hybrid offers buyers the same varied range of active safety technologies designed to avoid or mitigate the effects of a collision. As standard, the car is equipped with KIA Vehicle Stability Management (VSM) for maximum stability under braking and cornering. If VSM detects a loss of traction, it uses the car’s Electronic Stability Control (ESC) system and the electric motor-driven power steering to help the driver retain control. Other standard active hazard-avoidance technologies available to Niro Plug-in Hybrid buyers include, Autonomous Emergency Braking* (Forward Collision-Avoidance Assist), Lane Keeping Assist, and Driver Attention Warning. Optional safety technologies include Smart Cruise Control, Blind-Spot Collision Warning and Rear Cross-Traffic Collision Warning.

Cars

LHI is coming to save your car from hazards

Local Hazard Information will give drivers advance warning of potential dangers lurking around the corner

Published

on

There are many times when knowing what is around the corner could be useful. But for drivers that knowledge could be critical. Now, thanks to Ford’s new connected car technology, it is also a reality.

Local Hazard Information (LHI) marks a significant step on the journey towards a connected transport infrastructure by helping drivers prepare for and potentially avoid dangers on the road. When drivers ahead encounter sudden tailbacks, accidents or spilled loads, the driver behind – and possibly out of sight – is given advance warning. This could also apply to everything from freak hailstorms, to sudden flooding, or even landslides.

The triggers for the system come from what is happening in the cars ahead. It could be that airbags have been activated, hazard warning lights are flashing, or windscreen wipers are in operation. Previous traffic incident alert systems have relied on drivers to input information in order to generate alerts. LHI works autonomously, without the need for any driver interaction, to generate information and issue warnings.

Hazards are only displayed – via the dashboard display – if the incident is likely to impact on the driver’s journey. LHI is designed to be more beneficial to drivers than hazard information from current radio broadcasting systems, which often deliver notifications not relevant to them.

Already featuring as standard and free of charge for the first year on the new Ford Puma, LHI technology is being rolled out across more than 80 per cent of Ford’s passenger vehicle line-up by the end of this year. Crucially, the benefit will not be limited only to those travelling in Ford vehicles. Information sent can be used to alert drivers of other manufacturers’ vehicles, and vice-versa.

“What makes Local Hazard Information different is that it is the cars that are connected – via the Internet of Things. There is no reliance on third party apps. This is a significant step forward. Warnings are specific, relevant and tailored to try to help improve your specific journey.” Joerg Beyer, executive director, Engineering, Ford of Europe

How it works

Sensors monitor activities including emergency braking, fog lights and traction control to detect adverse weather or road conditions. Data from these activities is then computed to determine the hazard location and whether a traffic incident has occurred.

The vehicle automatically provides updates through a secure connection to “the cloud” using the Ford Pass Connect modem. Ford’s technology partner HERE Technologies operates the central cloud-based platform that collates information from multiple vehicle brands, governed by a business-to-business agreement.

The more cars are connected to the network, the greater the efficiency of the system. When many vehicles generate the same warning, others in the vicinity receive incident information from the cloud via the cellular network, enabling drivers to reduce speed or take appropriate action.

Additional information is sourced from public authority incident databases and traffic reports to provide drivers with further advance warnings including approaching vehicles driving on the wrong side of the carriageway, animals or people in the road ahead, and roadworks.

The on-board modem will be connected at the time of vehicle delivery. Customers may choose to opt in/opt out of certain data sharing.

Local Hazard Information data provided by HERE Technologies.

Continue Reading

Cars

SA gets live EV charge map

Published

on

Drivers of fully electric and plug-in hybrid vehicles can now plan their journeys with ease using a live map to locate available public charging stations nationwide. 

The live map displays the entire network of Jaguar Powerway and GridCars supported public charging stations, and indicates the current status of each including if it’s online, offline or in use. The map also shows the time and date of the station’s last successful use, as well as a tally of that particular station’s total charge sessions to date.

Information about each charge station’s exact location with either map pin drops or GPS coordinates is also available.

Brian Hastie, Network Development Director, Jaguar Land Rover South Africa, says: “While the primary charging habit for the majority of EV drivers will be at home where it’s most convenient and cost-effective, we know that the future of electric mobility ultimately relies on a public charging network. As the rollout of public charging stations intensifies and the dots between existing locations are connected, it’s vital that EV drivers are able to view the status of chargers remotely. This live map makes that possible.”

Jaguar South Africa began the rollout of its Powerway network of public charging stations late in 2018. The Powerway includes public charging stations along frequently traveled holiday routes along the N1, N2 and N3, and at various points of convenience, such as shopping centres, in the country’s major hubs including Johannesburg, Pretoria, Durban, Cape Town, Port Elizabeth, East London and Bloemfontein. 

The Powerway network also includes publicly available chargers in customer parking areas at every Jaguar Land Rover retailer in South Africa. 

The majority of charging stations on the network are 60kWh fast chargers which also feature 22kWh AC fast charge ports to accommodate plug-in hybrid vehicles (PHEVs). The AC standard Type 2 socket will allow charging of all EVs currently available in South Africa, while the DC charger is fitted with the CCS DC type socket used by the vast majority of EVs in SA.

The R30-million Jaguar Powerway investment, combined with the network of GridCars-supported public chargers, makes day-to-day travel as well as longer day trips and even very long journeys possible for owners of electric vehicles.

Continue Reading

Trending

Copyright © 2019 World Wide Worx