Connect with us

Cars

The self-driving future is parking near you

Published

on

As we race to a future of self-driving cars, many argue it won’t happen in South Africa. But, writes ARTHUR GOLDSTUCK, it’s already here.

The future of the automobile is here. You only need look in your rear-view mirror. There’s a good chance that one of those cars you see is an Audi or a Subaru or a Ford or a BMW that has an assisted driving feature activated.

That means, on a current Audi A5, a “lane assist” feature that alerts drivers when they are veering over lane demarcations, “active lane assist” that steers the vehicle back into a lane when it detects the car moving over the lines, and “side assist” that detects vehicles coming up in the next lane when the driver signals a lane change – even forcing the car back into its own lane.

Part of the dashboard of the Audi A5, with Driver Assist active. Pic: Arthur Goldstuck

Part of the dashboard of the Audi A5, with Driver Assist active. Pic: Arthur Goldstuck

In the new Land Rover Discovery, an Autonomous Emergency Braking system spots potential collisions and applies brakes automatically if an accident is anticipated. It has a form of self-driving as well, with an off-road feature called All-Terrain Progress Control, which allows the driver to hand control over to the vehicle when the terrain is particularly difficult. The driver steers while the ATPC takes over all other functions, including braking, applying torque to the wheels, individually, for  maximum traction, and controlling the speed.

CAC50LRS111C021001

Land Rover Discovery

In the Subaru XV, EyeSight Driver Assist Technology comprises two colour cameras positioned near the rear-view mirror. They monitor traffic movement, and feed the information to an artificial intelligence systems that fine tunes cruise control automatically and keeps an eye on unintended lane changes. It also features Pre-Collision Braking, in effect watching for cars that brake suddenly in front or – that perennial South African road hazard – cars cutting in dangerously.

Subaru XV

Subaru XV

The new Ford Fusion features the whole bang-shoot of automated safety, from Adapative Cruise Control that slows the car if it detects traffic ahead, to automated perpendicular parking and park-out assist for getting out of tight spots. Cross-Traffic Alert is like having a built-in assistant to warn of approaching traffic when a car is backing out of a driveway or parking spot.

The cherry on top is Pre-Collision Assist with Pedestrian Detection, which warns of potential collisions with both cars and pedestrians. The brakes instantly “precharge” and increase sensitivity for full responsiveness when the brakes are applied – which happens automatically if the driver doesn’t respond to the alarm.

The Volvo CX90 features all of the above, along with City Safety, designed to avoid collisions in slow-moving, stop-and-go city traffic. It brakes automatically, avoiding or helping to reduce the effects of a collision.

Volvo CX90

Volvo CX90

Every one of the above is a car I’ve tested on the South African roads. In the automobile industry, science fiction is not fiction anymore.

It’s not a great leap for such features to evolve to fully automated driving as well. The big catch, aside from the law, is that none of them are cheap, and none are aimed at the mass market. Yet.

In cars, future shock is no longer about how much of driving can be automated. It’s about how much of that automation can be built into mass-market cars.

The biggest shock comes when the high-end features like reverse cameras suddenly appear in entry-level cars. The nippy little Ford Fiesta ST2000 may not be a beginner car, but it points the way. It already features rear-view colour cameras for safer reversing, and AvanceTrac, which automatically applies brakes and adjusts engine torque when it detects wheelslip.

2017 Ford Fusion

2017 Ford Fusion

The true breakthrough, for the ordinary driver, will come when standard features in all cars include lane-assist and park-assist, as well as the predictive braking systems appearing in the high-end vehicles. That will gradually prepare drivers for their next upgrade: the self-driving vehicle, or at least a significant turn of the wheel closer to that dream.

Laws will have to evolve to allow for many of these changes, but that is already beginning, says Trevor Hill, Head of Audi South Africa.

“Germany will soon change its legislation, then the USA, probably in parallel, and then the rest of the world will follow,” he says. “But you have to have infrastructure, you have to have lines in the road. In Polokwane right now, an autonomous vehicle would end up in the bush. The sensors in the car will need to read the road markings, as well the traffic.

“But this will all happen in time. Once we get this technology into South Africa, we can start to explain to authorities what the benefits are. This will save lives. If you could put the current predictive braking features on trucks and taxis, you would save a lot of lives. But then everyone has to do it, because if one car brakes suddenly and others don’t, you have a problem.

“There are real safety benefits, though. Once costs come down and it becomes standard, most cars will get it. The technology is there; you just have to put it in the cars.”

The current Audi A5, already on South African roads, is a car of the future, available today, and does not need any change in law to be allowed on the roads. Like the Land Rover Discovery and Ford Fusion, it can detect a collision about to happen, with a technology called “pre sense”, which applies brakes automatically. That is just the beginning.

USC30AUC191A121001_2

Audi A5

The new Audi A8, revealed in Barcelona a few months ago and due to arrive in South Africa next year, has built in numerous new features that also improve both autonomy and safety, without flouting any laws.

It features a parking space finder, similar to that of the Ford Fusion, which scans for open parking spaces. Chances are that the next model will drive itself to and from parking spaces after it drops you off at the front door of a building. It’s safety features are right out of the future.

Audi A8

Audi A8

“If the car is about to be hit from the side, it will first try to avoid accident. But, if it is unavoidable, the side of the car lifts 8cm so that it exposes the underside of car and distributes the impact, protecting passengers from the direct impact. An artificial intelligence active suspension means electronic actuators on the wheels smooths out potholes, bumps, and rough surfaces.”

It’s not only about safety and comfort, however. Hill presents a fascinating vision for the role of the self-driving car: “With autonomous driving, we want to create a 25th hour for the customer. The hour spent driving can become productive time in the car, in effect giving you an extra hour to get things done.”

The promised delivery date for autonomous vehicles, from most manufacturers, is 2021. It cannot come a day too soon.

 

  • Arthur Goldstuck is founder of World Wide Worx and editor-in-chief of Gadget.co.za. Follow him on Twitter on @art2gee and on YouTube.

Cars

The promise of the self-driving car: Getting closer to reality?

Although the technology still faces plenty of hurdles before commercial viability, autonomous vehicles will one day rule the road, writes ANNA KUČÍRKOVÁ

Published

on

Are you ready for your next car to drive itself?

The promise of the self-driving car: Getting closer to reality? 

It’s a question being asked more frequently – “when will self-driving cars become the dominant presence on streets everywhere?” 

Automakers and tech companies alike continue to push the narrative that self-driving cars have indeed arrived. However, a better answer of when they actually will scale to consumers is some variation of “be patient.” 

For better and for worse, it remains the best possible response in today’s tech-heavy, yet uncertain climate.

Back in 2015, outspoken Tesla CEO Elon Musk foresaw a self-driving car by 2018, with the claim: “My guess for when we will have full autonomy is approximately three years. In some markets, regulators will be more forward-leaning than others, but in terms of when it will be technologically possible, it will be three years.” 

That bold prediction has yet to materialize.

Google was also bullish on the fast rise and adoption of vehicle automation. While parent company Alphabet continues to advance their Waymo self-driving division beyond most competitors, it’s offset by the need for someone to sit in the driver’s seat. 

In 2018, GM and Ford made bold declarations of putting cars into production that were free of steering wheels and pedals, by 2019 and 2021, respectively. Since that time, GM has backed off their original plan with Doug Parks, GM’s vice president of autonomous vehicles, citing regulation: “Until we have exemptions [from the federal government], which we filed a petition for, and/or law changes, we probably wouldn’t go forward with Gen 4. But we think it’s really something we’ve got to talk about, we’ve got to work on.”

Ford, however, continues to push ahead towards their goal.

The hard truth though is that similar to many of history’s biggest advancements, there will be growing pains.

While that’s not as optimistic as one would hope, the reality is the sphere of self-driving technology, and the vehicles and they’re deployment, remains a work in progress. 

The good news is that real-world testing and application of certain autonomous concepts are well past the infancy stage.

As technology matures and the idea of a car without a steering column or pedals become less radical, the day will arrive when autonomous, self-driving vehicles rule the road.

But where are we now?

Let’s look at how far we’ve come in self-driving tech, including where the industry leaders stand in their development. And, what’s holding us back from a fully autonomous future.

The Current State of Automotive Autonomy

Any ground-up discussion on self-driving cars begins with the question, “what does it mean for a car to be considered self-driving or fully autonomous?”

Autonomous standards defined by the Society of Automotive Engineers (SAE) and adopted by the U.S. National Highway Traffic Safety Administration’s (NHTSA) include six levels of vehicle automation.

Starting at Level 0, where there is no automation, the standards top out at Level 5 – full self-driving capabilities, no steering wheel, no pedals.

Most personal vehicles on the road today possess Level 1 or Level 2 automation – features such as adaptive cruise control, advanced assistance with acceleration and steering, automatic braking, or lane guidance. 

Many of these features are becoming standard on most classes of vehicle. So unless you’re driving around in a car built prior to the early 1990s, chances are high that yours has some form of automation.

However, the leap from Level 2 to Level 3 automation is a big one. Then the holy grail, of course, is Level 5. But how close are manufacturers to this pinnacle of long-promised self-driving technology?

Who’s Leading the Revolution?

No fewer than 50 different companies are working to bring self-driving vehicles to a street near you. The diverse list of firms involved ranges from luxury automakers such as Mercedes-Benz and Audi to small tech startups responsible for creating key components of the driverless technology. 

Others companies making a play include rideshare giants Lyft and Uber, the latter of which recently netted a $1 billion investment into their self-driving program. German manufacturer Continental who aims to revolutionize delivery and distribution by blending autonomous vehicles with delivery robots.

American legacy automakers GM and Ford have also made substantial investments towards mass-producing driverless cars. Even as they backed off their bold 2019 production goals, GM’s self-driving car program, Cruise, pulled in roughly $5 billion in outside investments.

Ford, for their part, have flown under the radar relative to others in the driverless segment. Even after admitting initial plans might have been too lofty, the automaker, in a partnership with startup Argo, are testing autonomous vehicles in Detroit, Miami, and Washington, D.C. They remain optimistic in hitting their 2021 production goal.

There are three companies, however, that collectively appear to be outpacing most others in the push to go driverless – Nvidia, Waymo, and Tesla.

Nvidia

In producing some of the top next-gen GPU and AI platforms for self-driving solutions, Nvidia has built an impressive partner roster which includes Audi, Mercedes-Benz, Toyota, and Volkswagen. 

Earlier this year, the company announced that Volvo is adopting Nvidia’s AutoPilot solution to deliver Level 2+ vehicle automation. In all, over 300 companies use Nvidia in the production of self-driving vehicles and related technologies.

Waymo

When looking at actual miles driven by autonomous vehicles, no one comes remotely close to Alphabet (Google’s parent company) subsidiary Waymo. More significant, Waymo’s commercial self-driving taxi service, Waymo One, is set to expand beyond its Phoenix-based test group of  400 early riders. 

With the opening of a new tech center in Mesa, Arizona, it positions the company to increase its fleet of driverless cars (with safety operator in the driver’s seat) and the group of early adopters.

Tesla

Perhaps most ambitious of all is Tesla, thanks in large part to its outspoken Principal and CEO, Elon Musk. The electric car company continues to push the boundaries of its current automated software, Tesla Autopilot, into a full-blown “self-driving suite.” Their commitment to doing so as early as next year runs counter to the measured approach adopted by the rest of the industry. 

It reflects just how far ahead Tesla might be (or believe they are) from everyone else. Consider the company’s claims that the self-driving hardware is already in place, and bringing it to the public is now only a matter of getting the software right. In addition, Tesla is pursuing automation without the bulky equipment that accompanies other self-driving cars.

The concern is that the rush without reason or continued research might lead to accidents.  Some worry a backlash would reinforce the belief that the world isn’t ready for fully autonomous cars. Or add to the laundry list of reasons why others maintain they are doomed to fail.

Expressing concern is Dieter Zetsche, former chairman at Daimler AG and head of Mercedes-Benz. Mr. Zetsche, according to the Washington Post, likens it to Boeing’s 737 Max air crashes: “Even if autonomous cars are 10 times safer than those driven by humans, it takes one spectacular incident to make it much harder to win widespread acceptance.”

The Question of Safety

There is little doubt that eventually, autonomous cars will become ubiquitous on streets and highways throughout the country. To reach that point, there are still plenty of obstacles the self-driving segment must clear.

As evidenced by Mr. Zetsche, first among them is safety, or in more precise terms, the perception of safety.

Currently, perception lingers that autonomous technology is far from safe. Before achieving mass acceptance, people will require reassurance that an AI-driven car is more adept at keeping them safe than their own driving instincts and abilities.

Long term, the point of AI performing better at navigating the hazards of the road will prove accurate. Humans, after all, are flawed beings, and there’s little doubt when viewing it collectively, self-driving cars will make roads safer. Consider this:

  • They’ll eliminate drunk and distracted driving.
  • AI controlling one car may better anticipate the actions of the AI in another vehicle, removing the unpredictability of two human drivers interacting.
  • Travel will also become more efficient, thus reducing the prevalence of speeding or dangerous/aggressive drivers.

Even with our shortcomings behind the wheel, recent accidents involving self-driving tech do give people pause. As the knowledge level of self-driving AI expands at an increasingly rapid pace, there is still a considerable learning curve to navigate.

Self Driving Cars Are Coming, Be Patient

Let’s reconsider our original question:

When will self-driving cars become the dominant presence on streets everywhere? 

While lacking a consistent approach to solving, then advancing, the pursuit of a self-driving car, that so many have committed to finding an answer is a positive sign for the future of automated transportation.

For a timely comparison, the 50th Anniversary of the first Apollo moon landings has reignited interest it what it took to reach the lunar surface. Hundreds of companies and billions of dollars moving toward a singular goal. And it was accomplished in less than a decade.

The circumstances may be different, the interests more disparate than unified, it remains a worthwhile note of what’s possible with industry and innovation all seeking a common goal. 

So while the answer to when we’ll see mass adoption of self-driving cars may still be some variation of “be patient,” the scope continues to narrow. Soon enough, being patient will give way to being a passenger.

Article reposted with permission. Original article here.

Continue Reading

Cars

SA pioneers connected car strategy

Toyota has partnered with Vodacom and Altron to make smarter cars, using SIM cards to automate car management across its entire range, writes BRYAN TURNER.

Published

on

Vodacom has announced a partnership with Toyota and Altron Netstar to connect every Toyota car to the Internet. The solution is South African-engineered and pioneers connected driving in the global market, in terms of standardising the offering across the entire range of cars.

“From the 1st of September, every Toyota and Lexus model sold will be connected,” says Kerry Roodt, General Manager of Marketing Communications at Toyota South Africa. “This includes Wi-Fi connectivity and 15GB of data. This enables the app to work wherever the driver is situated, so they don’t need to be near the car to use the app.”

Those who don’t want the 15GB of data will still be able to use the features of the connected car, without the Wi-Fi hotspot, free of charge.

Andrew Kirby, President and CEO of Toyota South Africa Motors, says: “For any mainstream brand, we are a first to introduce this technology as standard across all models, whether it be a Land Cruiser or an Etios. This is not cheap technology; it is a significant investment on our part that we were ready to make.”

The benefits of having a connected car are: 

  • being connected to a reliable secondary network;
  • having an automated log book;
  • functionality to book a service with the tap of a button;
  • having connected safety features like a battery monitor;
  • being cognisant of driving habits with a driving score, which monitors harsh breaking, fast cornering, and speeding.

“Our collaboration with Toyota has been a global first,” says Mteto Nyathi, chief executive officer of Altron Group. “We needed to make sure we met the global standards, as well. Anyone who knows Toyota’s standards knows that they’re high. We’re excited because now we’ve made this high-quality technology that can compete in the global market.”

“This is important when you consider where we’re coming from,” says William Mzimba, CEO of Vodacom Business. “When you contextualise this partnership, this speaks to a connected future. We don’t have to wait for 5G, we have technologies that can connect us at rapid speeds. It’s exciting to see that Toyota is not just talking about it, they’re actually doing it. We are now taking the user experience and connecting users with their car.”

The Altron Netstar group has pioneered connected tracking technology, but had to develop new technology to make this happen.

“It should never be confused with stolen vehicle technology,” says Nyathi. “We have a completely separate solution for telematics and WiFi. To combine WiFi with telematics in a small device, I am proud of our team to address these challenges. To be able to come up with a technology that’s developed and manufactured in South Africa is quite something, and ultimately contributes to South Africa’s economy.”

Kirby says: “Vodacom has managed to separate telematics data on a prepaid portion of the SIM, while another portion belongs to the WiFi in the car. If the WiFi runs out, the car can continue running applications like linked GPS maps and car tracking free of charge.”

This partnership marks the start of a longer-term vision to enable a more connected society by paving the way for the expansion of broadband access to as many South Africans as possible.

Vodacom’s partnership with Altron Netstar and Toyota is the first step towards a more connected future, where autonomous cars will become a reality.

Continue Reading

Trending

Copyright © 2019 World Wide Worx