Connect with us

Cars

The self-driving future is parking near you

Published

on

As we race to a future of self-driving cars, many argue it won’t happen in South Africa. But, writes ARTHUR GOLDSTUCK, it’s already here.

The future of the automobile is here. You only need look in your rear-view mirror. There’s a good chance that one of those cars you see is an Audi or a Subaru or a Ford or a BMW that has an assisted driving feature activated.

That means, on a current Audi A5, a “lane assist” feature that alerts drivers when they are veering over lane demarcations, “active lane assist” that steers the vehicle back into a lane when it detects the car moving over the lines, and “side assist” that detects vehicles coming up in the next lane when the driver signals a lane change – even forcing the car back into its own lane.

Part of the dashboard of the Audi A5, with Driver Assist active. Pic: Arthur Goldstuck

Part of the dashboard of the Audi A5, with Driver Assist active. Pic: Arthur Goldstuck

In the new Land Rover Discovery, an Autonomous Emergency Braking system spots potential collisions and applies brakes automatically if an accident is anticipated. It has a form of self-driving as well, with an off-road feature called All-Terrain Progress Control, which allows the driver to hand control over to the vehicle when the terrain is particularly difficult. The driver steers while the ATPC takes over all other functions, including braking, applying torque to the wheels, individually, for  maximum traction, and controlling the speed.

CAC50LRS111C021001

Land Rover Discovery

In the Subaru XV, EyeSight Driver Assist Technology comprises two colour cameras positioned near the rear-view mirror. They monitor traffic movement, and feed the information to an artificial intelligence systems that fine tunes cruise control automatically and keeps an eye on unintended lane changes. It also features Pre-Collision Braking, in effect watching for cars that brake suddenly in front or – that perennial South African road hazard – cars cutting in dangerously.

Subaru XV

Subaru XV

The new Ford Fusion features the whole bang-shoot of automated safety, from Adapative Cruise Control that slows the car if it detects traffic ahead, to automated perpendicular parking and park-out assist for getting out of tight spots. Cross-Traffic Alert is like having a built-in assistant to warn of approaching traffic when a car is backing out of a driveway or parking spot.

The cherry on top is Pre-Collision Assist with Pedestrian Detection, which warns of potential collisions with both cars and pedestrians. The brakes instantly “precharge” and increase sensitivity for full responsiveness when the brakes are applied – which happens automatically if the driver doesn’t respond to the alarm.

The Volvo CX90 features all of the above, along with City Safety, designed to avoid collisions in slow-moving, stop-and-go city traffic. It brakes automatically, avoiding or helping to reduce the effects of a collision.

Volvo CX90

Volvo CX90

Every one of the above is a car I’ve tested on the South African roads. In the automobile industry, science fiction is not fiction anymore.

It’s not a great leap for such features to evolve to fully automated driving as well. The big catch, aside from the law, is that none of them are cheap, and none are aimed at the mass market. Yet.

In cars, future shock is no longer about how much of driving can be automated. It’s about how much of that automation can be built into mass-market cars.

The biggest shock comes when the high-end features like reverse cameras suddenly appear in entry-level cars. The nippy little Ford Fiesta ST2000 may not be a beginner car, but it points the way. It already features rear-view colour cameras for safer reversing, and AvanceTrac, which automatically applies brakes and adjusts engine torque when it detects wheelslip.

2017 Ford Fusion

2017 Ford Fusion

The true breakthrough, for the ordinary driver, will come when standard features in all cars include lane-assist and park-assist, as well as the predictive braking systems appearing in the high-end vehicles. That will gradually prepare drivers for their next upgrade: the self-driving vehicle, or at least a significant turn of the wheel closer to that dream.

Laws will have to evolve to allow for many of these changes, but that is already beginning, says Trevor Hill, Head of Audi South Africa.

“Germany will soon change its legislation, then the USA, probably in parallel, and then the rest of the world will follow,” he says. “But you have to have infrastructure, you have to have lines in the road. In Polokwane right now, an autonomous vehicle would end up in the bush. The sensors in the car will need to read the road markings, as well the traffic.

“But this will all happen in time. Once we get this technology into South Africa, we can start to explain to authorities what the benefits are. This will save lives. If you could put the current predictive braking features on trucks and taxis, you would save a lot of lives. But then everyone has to do it, because if one car brakes suddenly and others don’t, you have a problem.

“There are real safety benefits, though. Once costs come down and it becomes standard, most cars will get it. The technology is there; you just have to put it in the cars.”

The current Audi A5, already on South African roads, is a car of the future, available today, and does not need any change in law to be allowed on the roads. Like the Land Rover Discovery and Ford Fusion, it can detect a collision about to happen, with a technology called “pre sense”, which applies brakes automatically. That is just the beginning.

USC30AUC191A121001_2

Audi A5

The new Audi A8, revealed in Barcelona a few months ago and due to arrive in South Africa next year, has built in numerous new features that also improve both autonomy and safety, without flouting any laws.

It features a parking space finder, similar to that of the Ford Fusion, which scans for open parking spaces. Chances are that the next model will drive itself to and from parking spaces after it drops you off at the front door of a building. It’s safety features are right out of the future.

Audi A8

Audi A8

“If the car is about to be hit from the side, it will first try to avoid accident. But, if it is unavoidable, the side of the car lifts 8cm so that it exposes the underside of car and distributes the impact, protecting passengers from the direct impact. An artificial intelligence active suspension means electronic actuators on the wheels smooths out potholes, bumps, and rough surfaces.”

It’s not only about safety and comfort, however. Hill presents a fascinating vision for the role of the self-driving car: “With autonomous driving, we want to create a 25th hour for the customer. The hour spent driving can become productive time in the car, in effect giving you an extra hour to get things done.”

The promised delivery date for autonomous vehicles, from most manufacturers, is 2021. It cannot come a day too soon.

 

  • Arthur Goldstuck is founder of World Wide Worx and editor-in-chief of Gadget.co.za. Follow him on Twitter on @art2gee and on YouTube.

Cars

Volvo to use blockchain to trace battery cobalt

Published

on

Volvo Cars will become the first carmaker to implement global traceability of cobalt used in its batteries by applying blockchain technology. The announcement follows the reveal last month of the company’s first fully electric car, the XC40 Recharge.

Traceability of raw materials used in the production of lithium-ion batteries, such as cobalt, is one of the main sustainability challenges faced by carmakers. Volvo says its committed to full traceability, ensuring that customers can drive electrified Volvos knowing the material for the batteries has been sourced responsibly.

“It is a mineral that is essential to the production of the lithium-ion batteries that power electric cars,” says Greg Maruszewski, Managing Director of Volvo Cars South Africa. “But, sadly, it has long been suspected that some of the cobalt comes from mines that don’t use ethical mining practices. Now, thanks to blockchain traceability, we will know that the cobalt has been sourced responsibly. We are the first and only vehicle manufacturer that can make this statement. Accordingly, South African motorists who buy a Volvo in our XC90 T8 range can do so with pride – with the guaranteed knowledge that only ethical mining practices have taken place in the cobalt supply chain.”

Blockchain technology, which establishes a transparent and reliable shared data network, significantly boosts transparency of the raw material supply chain as the information about the material’s origin cannot be changed undetected.

Volvo Cars has now reached an agreement with its two global battery suppliers, CATL of China and LG Chem of South Korea, and leading global blockchain technology firms to implement traceability of cobalt starting this year.

Technology firms Circulor and Oracle operate the blockchain technology across CATL’s supply chain following a successful pilot earlier this summer, while the Responsible Sourcing Blockchain Network (RSBN), together with responsible sourcing specialists RCS Global and IBM, is rolling out the technology in LG Chem’s supply chain.

“We have always been committed to an ethical supply chain for our raw materials,” says Martina Buchhauser, head of procurement at Volvo Cars. “With blockchain technology we can take the next step towards ensuring full traceability of our supply chain and minimising any related risks, in close collaboration with our suppliers.”

A blockchain is a digital ledger containing a list of records linked to each other via cryptography. Within supply chains, the technology creates records of transactions, which cannot be changed while also enforcing a common set of rules for what data can be recorded. This allows participants to verify and audit transactions independently.

In this particular case, data in the blockchain include the cobalt’s origin, attributes such as weight and size, the chain of custody and information establishing that participants’ behavior is consistent with OECD supply chain guidelines. This approach helps create trust between participants along a supply chain.

Volvo Cars last month launched the XC40 Recharge, the first of an upcoming family of fully electric cars under the Recharge banner. By 2025, it expects half of its global sales to consist of fully electric cars, with the rest hybrids.

Last month, Volvo Cars also launched an ambitious climate plan, which includes a radical reduction of carbon emissions by 40% per vehicle by 2025, as well as a continued commitment to ethical business across its entire operations and supply chain.

CATL and LG Chem are renowned battery manufacturers, both with long and successful track records supplying lithium-ion batteries to the global automotive industry. They fulfil Volvo Cars’ strict sourcing guidelines in terms of technology leadership, responsible supply chains, reduction of carbon emissions and competitive cost models.

The agreements between Volvo Cars, CATL and LG Chem cover the supply of batteries over the coming decade for next-generation Volvo and Polestar models, including the XC40 Recharge.

Continue Reading

Cars

Jaguar tech delivers wake-up call for drivers

Published

on

From long working hours to daily school runs and the potentially stressful commute, Jaguar understands life for many is busier than ever. We’re so busy that 1 in 8 UK drivers admit to having fallen asleep at the wheel* – and this causes up to 25% of fatal accidents**.

As part of a wider vision to enrich and improve the lives of its drivers and passengers, Jaguar has developed a piece of technology, Driver Condition Monitor, which alerts the driver if it detects the tell-tale signs of drowsiness. The system takes inputs from thousands of data points, some of which are measured every thousandth of a second, including the Electronic Power Assisted Steering system, pedal inputs and general driving behaviour. Complex algorithms analyse all this to accurately determine whether a driver is becoming fatigued.

Fitted as standard on E-PACE and across the Jaguar range, Driver Condition Monitor detects if the driver is starting to feel drowsy and when required, provides an early warning to take a break. E-PACE’s instrument cluster displays a coffee-cup icon and sounds an alert when a prompt is needed. 

Edmund King, Director of the AA Charitable Trust, said: “The statistics around drowsy drivers are shocking, even more so when you realise it is an under-reported issue. Any measure that helps reduce the risk of tired drivers, such as Jaguar’s Driver Condition Monitor, is to be welcomed. The only real cure for tiredness is to rest – if drivers feel tired, or are alerted to possible tiredness by their car, they should pull over at the next safe place, drink a caffeinated drink and take a short nap.”

David Willey, Assisted and Automated Driving Attributes Senior Manager, Jaguar, said: “At Jaguar, we continuously review the latest advances in vehicle safety and develop innovative technologies to improve the driving experience, making it safer and more enjoyable. Driver Condition Monitor, along with a range of Advanced Driver Assistance Systems (ADAS) are offered as standard across the Jaguar range.”

The Jaguar E-PACE is also fitted with an array of other advanced driver assistance systems to help keep the driver and occupants safe. Standard features on all Jaguar models include Automated Emergency Braking, Lane Keep Assist, Cruise Control with Speed Limiter, front and rear parking aid and a rear facing camera.

The Jaguar E-PACE’s unique combination of sporty looks, dynamic driving and innovative safety features mean it’s fun to drive and safe, too. The SUV you’ll never tire of, is priced from R684,400 in South Africa and can be configured at www.jaguar.co.za.

AA Charitable Trust research. AA-Populus 11-17 September 2018. Online poll of 20,561 drivers

** Parliamentary Advisory Council for Transport Safety (PACTS) Fitness to Drive report 2016

Continue Reading

Trending

Copyright © 2019 World Wide Worx