Connect with us

Cars

The self-driving future is parking near you

Published

on

As we race to a future of self-driving cars, many argue it won’t happen in South Africa. But, writes ARTHUR GOLDSTUCK, it’s already here.

The future of the automobile is here. You only need look in your rear-view mirror. There’s a good chance that one of those cars you see is an Audi or a Subaru or a Ford or a BMW that has an assisted driving feature activated.

That means, on a current Audi A5, a “lane assist” feature that alerts drivers when they are veering over lane demarcations, “active lane assist” that steers the vehicle back into a lane when it detects the car moving over the lines, and “side assist” that detects vehicles coming up in the next lane when the driver signals a lane change – even forcing the car back into its own lane.

Part of the dashboard of the Audi A5, with Driver Assist active. Pic: Arthur Goldstuck

Part of the dashboard of the Audi A5, with Driver Assist active. Pic: Arthur Goldstuck

In the new Land Rover Discovery, an Autonomous Emergency Braking system spots potential collisions and applies brakes automatically if an accident is anticipated. It has a form of self-driving as well, with an off-road feature called All-Terrain Progress Control, which allows the driver to hand control over to the vehicle when the terrain is particularly difficult. The driver steers while the ATPC takes over all other functions, including braking, applying torque to the wheels, individually, for  maximum traction, and controlling the speed.

CAC50LRS111C021001

Land Rover Discovery

In the Subaru XV, EyeSight Driver Assist Technology comprises two colour cameras positioned near the rear-view mirror. They monitor traffic movement, and feed the information to an artificial intelligence systems that fine tunes cruise control automatically and keeps an eye on unintended lane changes. It also features Pre-Collision Braking, in effect watching for cars that brake suddenly in front or – that perennial South African road hazard – cars cutting in dangerously.

Subaru XV

Subaru XV

The new Ford Fusion features the whole bang-shoot of automated safety, from Adapative Cruise Control that slows the car if it detects traffic ahead, to automated perpendicular parking and park-out assist for getting out of tight spots. Cross-Traffic Alert is like having a built-in assistant to warn of approaching traffic when a car is backing out of a driveway or parking spot.

The cherry on top is Pre-Collision Assist with Pedestrian Detection, which warns of potential collisions with both cars and pedestrians. The brakes instantly “precharge” and increase sensitivity for full responsiveness when the brakes are applied – which happens automatically if the driver doesn’t respond to the alarm.

The Volvo CX90 features all of the above, along with City Safety, designed to avoid collisions in slow-moving, stop-and-go city traffic. It brakes automatically, avoiding or helping to reduce the effects of a collision.

Volvo CX90

Volvo CX90

Every one of the above is a car I’ve tested on the South African roads. In the automobile industry, science fiction is not fiction anymore.

It’s not a great leap for such features to evolve to fully automated driving as well. The big catch, aside from the law, is that none of them are cheap, and none are aimed at the mass market. Yet.

In cars, future shock is no longer about how much of driving can be automated. It’s about how much of that automation can be built into mass-market cars.

The biggest shock comes when the high-end features like reverse cameras suddenly appear in entry-level cars. The nippy little Ford Fiesta ST2000 may not be a beginner car, but it points the way. It already features rear-view colour cameras for safer reversing, and AvanceTrac, which automatically applies brakes and adjusts engine torque when it detects wheelslip.

2017 Ford Fusion

2017 Ford Fusion

The true breakthrough, for the ordinary driver, will come when standard features in all cars include lane-assist and park-assist, as well as the predictive braking systems appearing in the high-end vehicles. That will gradually prepare drivers for their next upgrade: the self-driving vehicle, or at least a significant turn of the wheel closer to that dream.

Laws will have to evolve to allow for many of these changes, but that is already beginning, says Trevor Hill, Head of Audi South Africa.

“Germany will soon change its legislation, then the USA, probably in parallel, and then the rest of the world will follow,” he says. “But you have to have infrastructure, you have to have lines in the road. In Polokwane right now, an autonomous vehicle would end up in the bush. The sensors in the car will need to read the road markings, as well the traffic.

“But this will all happen in time. Once we get this technology into South Africa, we can start to explain to authorities what the benefits are. This will save lives. If you could put the current predictive braking features on trucks and taxis, you would save a lot of lives. But then everyone has to do it, because if one car brakes suddenly and others don’t, you have a problem.

“There are real safety benefits, though. Once costs come down and it becomes standard, most cars will get it. The technology is there; you just have to put it in the cars.”

The current Audi A5, already on South African roads, is a car of the future, available today, and does not need any change in law to be allowed on the roads. Like the Land Rover Discovery and Ford Fusion, it can detect a collision about to happen, with a technology called “pre sense”, which applies brakes automatically. That is just the beginning.

USC30AUC191A121001_2

Audi A5

The new Audi A8, revealed in Barcelona a few months ago and due to arrive in South Africa next year, has built in numerous new features that also improve both autonomy and safety, without flouting any laws.

It features a parking space finder, similar to that of the Ford Fusion, which scans for open parking spaces. Chances are that the next model will drive itself to and from parking spaces after it drops you off at the front door of a building. It’s safety features are right out of the future.

Audi A8

Audi A8

“If the car is about to be hit from the side, it will first try to avoid accident. But, if it is unavoidable, the side of the car lifts 8cm so that it exposes the underside of car and distributes the impact, protecting passengers from the direct impact. An artificial intelligence active suspension means electronic actuators on the wheels smooths out potholes, bumps, and rough surfaces.”

It’s not only about safety and comfort, however. Hill presents a fascinating vision for the role of the self-driving car: “With autonomous driving, we want to create a 25th hour for the customer. The hour spent driving can become productive time in the car, in effect giving you an extra hour to get things done.”

The promised delivery date for autonomous vehicles, from most manufacturers, is 2021. It cannot come a day too soon.

 

  • Arthur Goldstuck is founder of World Wide Worx and editor-in-chief of Gadget.co.za. Follow him on Twitter on @art2gee and on YouTube.

Cars

Auto rivals team up for connected car demo

Rivals BMW, Ford and Groupe PSA, maker of Peugeot and Opel cars, have teamed up with the 5G Automotive Association (5GAA), Qualcomm Technologies and Savari for Europe’s first live demonstration of C-V2X direct communication technology operating across vehicles from multiple auto manufacturers.

Published

on

The live demonstration also featured a live showcase of C-V2X direct communication technology operating between passenger cars, motorcycles, and roadside infrastructure. C-V2X is a global solution for vehicle-to-everything (V2X) communication in support of improved automotive safety, automated driving and traffic efficiency.

The demonstration exhibited the road safety and traffic efficiency benefits of using C-V2X for Vehicle-to-Vehicle (V2V) collision avoidance, as well as Vehicle-to-Infrastructure (V2I) connectivity to traffic signals and Traffic Management Centers (TMC). C-V2X was operated using real-time direct communications over ITS spectrum and demonstrated its ability to work without cellular network coverage, and underscores its commercial readiness for industry deployment as early as 2020. Superior performance and cost-effectiveness compared to other V2X technologies, along with forward-compatibility with 5G, make C-V2X direct communications a preferred solution for C-ITS applications.

Six demonstrations were shown including: Emergency Electronic Brake Light, Intersection Collision Warning, Across Traffic Turn Collision Risk Warning, Slow Vehicle Warning and Stationary Vehicle Warning, Signal Phase and Timing / Signal Violation Warning and Vulnerable Road User (pedestrian) Warning. The vehicles involved included two-wheel e-scooters provided by BMW Group, and automotive passenger vehicles provided by Ford, Groupe PSA, and BMW Group, all of which were equipped with C-V2X direct communication technology using the Qualcomm® 9150 C-V2X chipset solution.  V2X software stack and application software, along with roadside infrastructure, were provided by industry leader, Savari.

C-V2X is globally supported by a broad automotive ecosystem, which includes the fast growing 5GAA organization.  The 5GAA involves over 85 global members comprised of many leading automakers, Tier-1 suppliers, software developers, mobile operators, semiconductor companies, test equipment vendors, telecom suppliers, traffic signal suppliers and road operators.  

Cellular modems will be key to the C-V2X deployment in vehicles to support telematics, eCall, connected infotainment and delivering useful driving/traffic/parking information. As C-V2X direct communication functionality is integrated into the cellular modem, C-V2X solutions are expected to be more cost-efficient and economical over competing technologies, and benefit from accelerated attach rates.  C-V2X direct communication field validations are currently underway in Germany, France, Korea, China, Japan and the U.S.

C-V2X currently stands as the only V2X technology based on globally recognized 3rd Generation Partnership Project (3GPP) specifications, with ongoing evolution designed to offer forward compatibility with 5G.  C-V2X also leverages and reuses the upper layer protocols defined by the automotive industry, including the European Telecommunications Standards Institute (ETSI) organization. C-V2X includes two complementary transmission modes: 

  • Direct communication as shown in this demonstration for V2V and V2I use cases
  • V2N network communication, which leverages mobile operators for connectivity and delivers cloud-based services, including automated crash notification (ACN, as mandated by eCall), hazard warnings, weather conditions, green light optimal speed advisory (GLOSA), parking spot location, and remote tele-operation to support automated driving, to name a few.

“This demonstration builds on the successful C-V2X showcase we organised with our members Audi, Ford and Qualcomm in Washington DC in April, said Christoph Voigt, Chairman of 5GAA.

“We are excited to witness the growing momentum behind this life-saving technology and to see our members working together to deploy C-V2X, and to make it hit the road as soon as possible.”  

“The BMW Group introduced the first C-ITS use cases already in 2013 with the market introduction of the BMW i3. Today most of envisaged C-ITS use-cases are already institutionalized. With the implementation of C-V2X, the BMW Group accomplishes the last set of the puzzle with a practical path to C-ITS showing quick benefits,” said Christoph Grote, Senior Vice President Electronics, BMW Group. 

“With its ability to safely and securely connect vehicles, along with its evolution into 5G, C-V2X is integral to Ford’s vision for future transportation in which all cars and infrastructure talk to each other,” said Thomas Lukaszewicz, Manager Automated Driving, Ford of Europe. “We are very encouraged by preliminary test results in Europe and elsewhere which support our belief that C-V2X direct communications has superior V2X communication capabilities.”

“We’re moving forward with seamless communication between cars and their environment for enhancing road safety, as well as our customers’ safety,” said Carla Gohin, Group PSA’s Vice President for Research and Advanced Engineering. “Following the first European C-V2X direct communications demonstration we hosted with Qualcomm Technologies last March, we’re pleased to work with leading automotive and technology companies today to highlight that C-V2X interoperability is a reality.” 

“This demonstration of interoperability between multiple automakers is not only another milestone achieved towards C-V2X deployment, but also further validates the commercial viability and global compatibility of C-V2X direct communications for connected vehicles,” said Enrico Salvatori, senior vice president & president, Qualcomm Europe and MEA. “We look forward in continuing to work alongside leaders in the automotive industry, like the 5GAA, BMW Group, Ford, Groupe PSA and Savari, to help advance the automotive industry’s shift towards a safer, connected and more autonomous future.” 

“As one of the V2X pioneers, our company is extremely pleased to continue to help enable the next step in the V2X revolution that we helped start back in 2008,” said Ravi Puvvala, CEO of Savari. “For the last year and a half, the Savari team has worked diligently alongside the dedicated C-V2X engineers in the 5GAA partnership. The resulting string of increasingly impressive demonstrations is continuing to convince the world that C-V2X will soon be deployed around the world.”

Continue Reading

Cars

Fleet management in 360

Published

on

An on-board dual camera system from global fleet management vehicle recovery and insurance telematics provider, Cartrack, reduces the costs of managing vehicle fleets, while creating new ways to motivate drivers and improve their on-the-road performance.

Historically, commercial drivers within fleets have been far removed from active management and oversight, with limited tools available in helping fleet owners understand how their drivers actually behave on the road. This lack of visual tracking ability has seen fleet managers struggle to achieve meaningful driver skills development, while also leaving companies vulnerable to poor operational performance and financial losses resulting from accidents.

Cartrack’s Drive Vision system is dramatically changing this status quo.

Drive Vision is an on-board dual camera system that records video footage with a 120-degree exterior view of the road ahead, and a 160-degree view inside the vehicle cab. Not only can fleet managers actively monitor all the footage that they wish, the system also records specific events such as speeding, harsh braking or an unforeseen action from a third-party.

Drive Vision’s video is continuously captured and then made available to users in two ways. The footage is either buffered in the unit’s memory card for up to five days, and selected time slots can be downloaded by the user via a web interface. Alternatively, footage is also automatically downloaded to the system when specific events occur, such as speeding or a collision.  The captured footage is stored at a web address and is immediately accessible to the client at any time. In addition, the data centre’s driver exception reporting mechanism can review the footage against a client’s pre-determined driver behaviour stipulations, creating a balanced and flexible driver performance assessment tool.

Cartrack CEO, Andre Ittmann, notes why Drive Vision is so useful for companies.

“There are two key strategic benefits to the technology.  Firstly, the company has a clear visual record of events in the case of an accident or legal dispute. Achieving this kind of detailed view hasn’t been possible before, and it can dramatically reduce the costs around incidents and accidents, on an ongoing basis. Secondly, Drive Vision is a highly functional, event-based coaching system. It therefore allows fleet managers to develop a culture that rewards excellent or improved performance, while also giving them the power to actively close skills gaps. “

Ittmann also notes that fleet video footage allows the company to monitor and manage aspects of its service and market performance, including the driver’s ability to access a work site, thereby ensuring timeous arrivals at designated locations and the ability to oversee passenger count and conduct.

Ittmann concludes that Drive Vision offers untold long-term advantages for companies.

“Beyond simply gaining a more efficient means to discipline errant drivers, Drive Vision also empowers fleet managers to proactively implement measures that will result in long-term benefits for their company. Ultimately, the company can also reduce costs related to driver mismanagement while simultaneously improving a driver’s skills and their performance on the road.”

Continue Reading

Trending

Copyright © 2018 World Wide Worx