Connect with us

Featured

The hacker, the scrapheap, and the first Apollo computer

Published

on

A Tshwane computer engineer has tracked down one of the great treasures of the computer age – the first space flight guidance computer. ARTHUR GOLDSTUCK tells the story.

AS-202 launch (2)

Flight AS-202 lifts off on 25 August 1966.

It’s not often that a YouTube video on a technical topic gives one goosebumps. And it’s not often that someone unpacking a computer makes history.

Francois Rautenbach, a computer hardware and software engineer from Tshwane, achieves both with a series of videos he has quietly posted on YouTube.

It shows the “unboxing” of a batch of computer modules that had been found in a pile of scrap metal 40 years ago and kept in storage ever since. Painstaking gathering of a wide range of evidence, from documents to archived films, had convinced Rautenbach he had tracked down the very first Guidance and Navigation Control computer, used on a test flight of the Saturn 1B rocket and the Apollo Command and Service Modules.

SAMSUNG CSC

The Rope Memory Modules from Flight AS-202’s Guidance Computer.

Apollo-Saturn 202, or Flight AS-202, as it was officially called, was the first to use an onboard computer – the same model that would eventually take Apollo 11 to the moon. Rautenbach argues that the computer on AS-202 was also the world’s first microcomputer. That title has been claimed for several computers made in later years, from the Datapoint 2200 built by CTC in 1970 to the Altair 8800 designed in 1974. The AS-202 flight computer goes back to the middle of the previous decade.

500004792-03-01

The Apollo lunar module, flown to the moon using the same Guidance Computer model that had been successfully tested on Flight AS-202.

His video succinctly introduces the story: “On 25th August 1966,  a very special computer was launched into space onboard Apollo flight AS-202. This was the first computer to use integrated circuits and the first release of the computer that took the astronauts to the moon. Until recently, the software for the Block 1 ACG (Apollo Guidance Computer) was thought to be lost…”

One can be forgiven for being sceptical, then, when he appears on screen for the first time to say, “I’ve got here with me the software for the first microcomputer.”

Then he unwraps the first package and says: “Guys, these modules contain the software for the first microcomputer that was ever built, that was ever used.”

The goosebumps moment comes when he reveals the NASA serial number on a device called a Rope Memory Module, and declares: “These modules are the authentic flight AS-202 software modules. These were found on a rubbish dump, on a scrap metal heap, about 40 years ago … and we are going to extract the software from this module.”

In a series of three videos, he extracts the software, shows how the computer was constructed, and uses a hospital X-Ray machine to inspect its insides. The third video starts with the kind of phrase that often sets off the hoax-detectors in social media: “Okay, so you guys won’t believe what I’ve been doing today.” But, in this case, it is almost unbelievable as Rautenbach takes the viewer through a physical inspection of the first Apollo guidance computer.

How did an engineer from Tshwane stumble upon one of the great treasures of the computer age? He has tended to avoid the limelight, and describes himself as “a hardware/software engineer who loves working on high-velocity projects and leading small teams of motivated individuals”.

In an interview this week, he added: “I am the perpetual hacker always looking for a new challenge or problem to solve. I have experience in designing digital hardware and writing everything from embedded firmware to high level security systems. Much of the work I did over the last five years revolved around building new and creative payment solutions.”

The breadth of his work gave him the expertise to investigate, verify, and extract the magic contained in the AS-202 computer. A global network of contacts led him to the forgotten hardware,  and that is when the quest began in earnest.

“I got interested in the Apollo Guidance Computer after reading a book by Frank O’Brien (The Apollo Guidance Computer: Architecture and Operation). Most of us grew up with the fallacy that the AGC was less powerful than a basic programmable calculator. I discovered that this was far from the truth and that the AGC was in fact a very powerful and capable computer.

“I started communicating with experts in the field and soon realised that there was a wealth of information available on the AGC and the Apollo space program in general.

“One day I received some photos of AGC Rope Memory modules from a friend in Houston marked ‘Flight 202’. After a little googling, I realised that these modules contained the software from Flight AS-202. As I learned more about AS-202, I discovered that this was the first time the AGC was used in an actual flight.”

Rautenbach eventually tracked down the source of the photos: a man who had picked up the entire computer, with memory modules, at an auction, as part of a three-ton lot of scrap metal.

“At one point he opened up to me and said he had other modules. He admitted he had a full Apollo guidance computer, and my theory was that it was used to develop the Apollo 11 guidance computer.  He sent me more information, and I thought he had THE computer.

“He’s got all this junk in his backyard. He started selling stuff on eBay and one day got a visit from the FBI wanting to know where he got it. He was able to find the original invoice and showed it to them and they went away. But it scared him and he didn’t want to tell anyone else in the USA what he had. Not being from America was an advantage.”

Rautenbach flew to Houston last year, opened the sealed packages and filmed the process.

“This was the first microcomputer. I opened it and played with it.  I realised this was the first computer that actually flew. I also found Rope Memory modules that said Flight 202, and he didn’t know what that was. I found it was from AS-202, and I said we can extract stuff from this.”

Rautenbach paid a deposit to borrow the units and have them sent to South Africa, so that he could extract and rebuild the software. He also made contact with Eldon Hall, leader of the team that developed the Apollo guidance computer and author of the 1966 book, Journey to the Moon: The History of the Apollo Guidance Computer.

The correspondence helped him verify the nature of the “scrap”. The Apollo command module from flight AS-202 was restored and is now on permanent display on the USS Hornet, the legendary aircraft carrier used to recover many Apollo command modules and now a museum. However, the computer parts were sold as scrap in 1976. And NASA never preserved a single copy of the software that had been used on its first guidance computer.

Fortunately, a sharp-eyed speculator realised the lot may contain something special. He sold off some of the scrap over the years, until that visit by the FBI. He still prefers to remain nameless.

Last week, on the 50th anniversary of the launch of AS-202, Rautenbach quietly began posting the evidence online. He also announced that the raw data he had extracted would shortly be made available to anyone who wished to analyse it.

His videos on the unboxing of the AS-202 computer and the extraction of the software can be viewed on YouTube at http://bit.ly/as202, where he also plans to post instructions for accessing the software.

  • Arthur Goldstuck is founder of World Wide Worx and editor-in-chief of Gadget.co.za. Follow him on Twitter and Instagram on @art2gee

Nasa’s description of flight AS-202 can be found at: http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=APST202

Technical specifications of the Apollo Guidance Computer can be found at: https://en.wikipedia.org/wiki/Apollo_Guidance_Computer

Apollo comes back to Pretoria

Francois Rautenbach points out that South Africa played a prominent role during the 93 minutes of flight AS-202: “Pretoria is mentioned no less than three times in the post-flight report. The AS-202 flight actually reached it’s highest point above South Africa. The telemetry data from the flight were recorded on computer tape at Hartebeesthoek and later shipped back to NASA.”

Featured

Money talks and electronic gaming evolves

Computer gaming has evolved dramatically in the last two years, as it follows the money, writes ARTHUR GOLDSTUCK in the second of a two-part series.

Published

on

The clue that gaming has become big business in South Africa was delivered by a non-gaming brand. When Comic Con, an American popular culture convention that has become a mecca for comics enthusiasts, was hosted in South Arica for the first time last month, it used gaming as the major drawcard. More than 45 000 people attended.

The event and its attendance was expected to be a major dampener for the annual rAge gaming expo, which took place just weeks later. Instead, rAge saw only a marginal fall in visitor numbers. No less than 34 000 people descended on the Ticketpro Dome for the chaos of cosplay, LAN gaming, virtual reality, board gaming and new video games. 

It proved not only that there was room for more than one major gaming event, but also that a massive market exists for the sector in South Africa. And with a large market, one also found numerous gaming niches that either emerged afresh or will keep going over the years. One of these, LAN (for Local Area Network) gaming, which sees hordes of players camping out at the venue for three days to play each other on elaborate computer rigs, was back as strong as ever at rAge.

MWeb provided an 8Gbps line to the expo, to connect all these gamers, and recorded 120TB in downloads and 15Tb in uploads – a total that would have used up the entire country’s bandwidth a few years ago.

“LANs are supposed to be a thing of the past, yet we buck the trend each year,” says Michael James, senior project manager and owner of rAge. “It is more of a spectacle than a simple LAN, so I can understand.”

New phenomena, often associated with the flavour of the moment, also emerge every year.

“Fortnite is a good example this year of how we evolve,” says James. “It’s a crazy huge phenomenon and nobody was servicing the demand from a tournament point of view. So rAge and Xbox created a casual LAN tournament that anyone could enter and win a prize. I think the top 10 people got something each round.”

Read on to see how esports is starting to make an impact in gaming.

Previous Page1 of 3

Continue Reading

Featured

Blockchain unpacked

Blockchain is generally associated with Bitcoin and other cryptocurrencies, but these are just the tip of the iceberg, says ESET Southern Africa.

Published

on

This technology was originally conceived in 1991, when Stuart Haber and W. Scott Stornetta described their first work on a chain of cryptographically secured blocks, but only gained notoriety in 2008, when it became popular with the arrival of Bitcoin. It is currently gaining demand in other commercial applications and its annual growth is expected to reach 51% by 2022 in numerous markets, such as those of financial institutions and the Internet of Things (IoT), according to MarketWatch.

What is blockchain?

A blockchain is a unique, consensual record that is distributed over multiple network nodes. In the case of cryptocurrencies, think of it as the accounting ledger where each transaction is recorded.

A blockchain transaction is complex and can be difficult to understand if you delve into the inner details of how it works, but the basic idea is simple to follow.

Each block stores:

–           A number of valid records or transactions.
–           Information referring to that block.
–           A link to the previous block and next block through the hash of each block—a unique code that can be thought of as the block’s fingerprint.

Accordingly, each block has a specific and immovable place within the chain, since each block contains information from the hash of the previous block. The entire chain is stored in each network node that makes up the blockchain, so an exact copy of the chain is stored in all network participants.

As new records are created, they are first verified and validated by the network nodes and then added to a new block that is linked to the chain.

How is blockchain so secure?

Being a distributed technology in which each network node stores an exact copy of the chain, the availability of the information is guaranteed at all times. So if an attacker wanted to cause a denial-of-service attack, they would have to annul all network nodes since it only takes one node to be operative for the information to be available.

Besides that, since each record is consensual, and all nodes contain the same information, it is almost impossible to alter it, ensuring its integrity. If an attacker wanted to modify the information in a blockchain, they would have to modify the entire chain in at least 51% of the nodes.

In blockchain, data is distributed across all network nodes. With no central node, all participate equally, storing, and validating all information. It is a very powerful tool for transmitting and storing information in a reliable way; a decentralised model in which the information belongs to us, since we do not need a company to provide the service.

What else can blockchain be used for?

Essentially, blockchain can be used to store any type of information that must be kept intact and remain available in a secure, decentralised and cheaper way than through intermediaries. Moreover, since the information stored is encrypted, its confidentiality can be guaranteed, as only those who have the encryption key can access it.

Use of blockchain in healthcare

Health records could be consolidated and stored in blockchain, for instance. This would mean that the medical history of each patient would be safe and, at the same time, available to each doctor authorised, regardless of the health centre where the patient was treated. Even the pharmaceutical industry could use this technology to verify medicines and prevent counterfeiting.

Use of blockchain for documents

Blockchain would also be very useful for managing digital assets and documentation. Up to now, the problem with digital is that everything is easy to copy, but Blockchain allows you to record purchases, deeds, documents, or any other type of online asset without them being falsified.

Other blockchain uses

This technology could also revolutionise the Internet of Things  (IoT) market where the challenge lies in the millions of devices connected to the internet that must be managed by the supplier companies. In a few years’ time, the centralised model won’t be able to support so many devices, not to mention the fact that many of these are not secure enough. With blockchain, devices can communicate through the network directly, safely, and reliably with no need for intermediaries.

Blockchain allows you to verify, validate, track, and store all types of information, from digital certificates, democratic voting systems, logistics and messaging services, to intelligent contracts and, of course, money and financial transactions.

Without doubt, blockchain has turned the immutable and decentralized layer the internet has always dreamed about into a reality. This technology takes reliance out of the equation and replaces it with mathematical fact.

Continue Reading

Trending

Copyright © 2018 World Wide Worx