Connect with us

Cars

How pizza can teach self-driving cars

Domino’s Pizza and Ford are launching an collaboration to understand the role that self-driving vehicles can play in pizza delivery.

As part of the testing, researchers from both companies will investigate customer reactions to interacting with a self-driving vehicle as a part of their delivery experience.  This research is important as both companies begin to examine and understand customers’ perspectives around the future of food delivery with self-driving vehicles.

“As delivery experts, we’ve been watching the development of self-driving vehicles with great interest as we believe transportation is undergoing fundamental, dramatic change,” said Patrick Doyle, Domino’s president and CEO. “We pride ourselves on being technology leaders and are excited to help lead research into how self-driving vehicles may play a role in the future of pizza delivery. This is the first step in an ongoing process of testing that we plan to undertake with Ford.”

As Ford builds out its business enabled by self-driving vehicles, conducting research with companies, like Domino’s, will be crucial to ensuring that the technology is applied in ways that enhance the customer experience. With a plan to begin production of self-driving vehicles in 2021, Ford is taking steps to design a business to meet the needs of both partner companies and their customers.

“As we increase our understanding of the business opportunity for self-driving vehicles to support the movement of people and goods, we’re pleased to have Domino’s join us in this important part of the development process,” said Sherif Marakby, Ford vice president, Autonomous and Electric Vehicles. “As a company focused on the customer experience, Domino’s shares our vision for a future enabled by smart vehicles in a smart environment that enhance people’s lives.”

Over the next several weeks, randomly-selected Domino’s customers in Ann Arbor will have the opportunity to receive their delivery order from a Ford Fusion Hybrid Autonomous Research Vehicle, which will be manually-driven by a Ford safety engineer and staffed with researchers. Customers who agree to participate will be able to track the delivery vehicle through GPS using an upgraded version of Domino’s Tracker®. They will also receive text messages as the self-driving vehicle approaches that will guide them on how to retrieve their pizza using a unique code to unlock the Domino’s Heatwave Compartment™ inside the vehicle.

“We’re interested to learn what people think about this type of delivery,” said Russell Weiner, president of Domino’s USA. “The majority of our questions are about the last 50 feet of the delivery experience. For instance, how will customers react to coming outside to get their food? We need to make sure the interface is clear and simple. We need to understand if a customer’s experience is different if the car is parked in the driveway versus next to the curb. All of our testing research is focused on our goal to someday make deliveries with self-driving vehicles as seamless and customer-friendly as possible.”

Local partner Roush Enterprises fabricated the prototype vehicle’s pizza container, Domino’s Heatwave Compartment, based on its experience working with Domino’s on the DXP® delivery vehicle in 2015. Ford and Domino’s completed preliminary testing of the delivery process using the vehicle in self-driving mode at Mcity, the simulated urban environment on the University of Michigan’s campus. The city of Ann Arbor also has been supportive of the testing process.

“I’m delighted that Ann Arbor continues to be at the forefront of autonomous-vehicle research,” said Ann Arbor Mayor Christopher Taylor. “While it’s pizza delivery today, my hope is that collaborations such as this will enable even more innovations tomorrow.”

Cars

Two-thirds of adults ready for cars that drive themselves

The latest Looking Further with Ford Trends Report reveals that behaviour is changing across key areas of our lives

Self-driving cars are a hot topic today, but if you had to choose, would you rather your children ride in an autonomous vehicle or drive with a stranger? You may be surprised to learn that 67 per cent of adults globally would opt for the self-driving car.

That insight is one of many revealed in the 2019 Looking Further with Ford Trend Report, released last week. The report takes a deep look into the drivers of behavioural change, specifically uncovering the dynamic relationships consumers have with the shifting landscape of technology.

Change is not always easy, particularly when it is driven by forces beyond our control. In a global survey of 14 countries, Ford’s research revealed that 87 per cent of adults believe technology is the biggest driver of change. And while 79 per cent of adults maintain that technology is a force for good, there are large segments of the population that have significant concerns. Some are afraid of artificial intelligence (AI). Others fear the impact of technology on our emotional wellbeing.

“Individually and collectively, these behavioural changes can take us from feeling helpless to feeling empowered, and unleash a world of wonder, hope and progress,” says Kuda Takura, smart mobility specialist at Ford Motor Company of Southern Africa. “At Ford we are deeply focused on human-centric design and are committed to finding mobility solutions that help improve the lives of consumers and their communities. In the context of change, we have to protect what we consider most valuable – having a trusted relationship with our customers. So, we are always deliberate and thoughtful about how we navigate change.”

Key insights from Ford’s 7th annual Trends Report:

Almost half of people around the world believe that fear drives change
Seven in 10 say that they are energised by change
87 per cent agree that technology is the biggest driver of today’s change
Eight in 10 citizens believe that technology is a force for good
45 per cent of adults globally report that they envy people who can disconnect from their devices
Seven out of 10 consumers agree that we should have a mandatory time-out from our devices

Click here to read more about the seven trends for 2019.

Previous Page1 of 2

Continue Reading

Cars

At last, cars talk to traffic lights to catch ‘green wave’

By ANDRE HAINZLMAIER, head of development of apps, connected services and smart city at Audi.

Stop-and-go traffic in cities is annoying. By contrast, we are pleased when we have a “green wave” – but we catch them far too seldom, unfortunately. With the Traffic Light Information function, drivers are more in control. They drive more efficiently and are more relaxed because they know 250 meters ahead of a traffic light whether they will catch it on green. In the future, anonymized data from our cars can help to switch traffic lights in cities to better phases and to optimise the traffic flow.

In the USA, Audi customers have been using the “Time-to-Green” function for two years: if the driver will reach the lights on red, a countdown in the Audi virtual cockpit or head-up display counts the seconds to the next green phase. This service is now available at more than 5,000 intersections in the USA, for example in cities like Denver, Houston, Las Vegas, Los Angeles, Portland and Washington D.C. In the US capital alone, about 1,000 intersections are linked to the Traffic Light Information function.

Since February, Audi has offered a further function in North America. The purpose of this is especially to enable driving on the “green wave”. “Green Light Optimized Speed Advisory” (GLOSA) shows to the driver in the ideal speed for reaching the next traffic light on green.

Both Time-to-Green and GLOSA will be activated for the start of operation in Ingolstadt in selected Audi models. These include all Audi e-tron models and the A4, A6, A7, A8, Q3, Q7 and Q8 to be produced from mid-July (“model year 2020”). The prerequisite is the “Audi connect Navigation & Infotainment” package and the optional “camera-based traffic sign recognition”.

Why is this function becoming available in Europe two years later than in the USA? 

The challenges for the serial introduction of the service are much greater here than, for example, in the USA, where urban traffic light systems were planned over a large area and uniformly. In Europe, by contrast, the traffic infrastructure has developed more locally and decentrally – with a great variety of traffic technology. How quickly other cities are connected to this technology depends above all on whether data standards and interfaces get established and cities digitalise their traffic lights.

On this project, Audi is working with Traffic Technology Services (TTS). TTS prepares the raw data from city traffic management centres and transmits them to the Audi servers. From here, the information reaches the car via a fast Internet connection.

Audi is working to offer Traffic Light Information in further cities in Germany, Europe, Canada and the USA in the coming years. In the large east Chinese city of Wuxi, Audi and partners are testing networks between cars and traffic light systems in the context of a development project.

In future, Audi customers may be able to benefit from additional functions, for example when “green waves” are incorporated into the ideal route planning. It is also conceivable that Audi e-tron models, when cruising up to a red traffic light, will make increased used of braking energy in order to charge their batteries. Coupled with predictive adaptive cruise control (pACC), the cars could even brake automatically at red lights.

In the long term, urban traffic will benefit. When cars send anonymised data to the city, for example, traffic signals could operate more flexibly. Every driver knows the following situation: in the evening you wait at a red light – while no other car is to be seen far and wide. Networked traffic lights would then react according to demand. Drivers of other automotive brands will also profit from the development work that Audi is carrying out with Traffic Light Information – good news for cities, which are dependent on the anonymised data of large fleets to achieve the most efficient traffic management.

In future, V2I technologies like Traffic Light Information will facilitate automated driving. 

A city is one of the most complex environments for an autonomous car. Nevertheless, the vehicle has to be able to handle the situation, even in rain and snow. Data exchange with the traffic infrastructure can be highly relevant here. 

Continue Reading

Trending

Copyright © 2019 World Wide Worx