Connect with us

Featured

Electric is to vehicles what digital is to business

The launch of the second generation Nissan Leaf electric vehicle signals the auto equivalent of digitalising business, writes ARTHUR GOLDSTUCK.

Businesses are besieged with warnings that they will not survive if they do not become digital organisations. That means ripping out traditional structures, styles and processes of business, and preparing for a world in which information flow is at the heart of operational activity.

The same thing is about to happen in the automobile industry, but replacing the word “digital” with “electric”. One after another, governments are beginning to set target dates for reduced or even zero emissions from new vehicles. Car brands have to change, or vanish.

However, merely replacing a petrol-driven vehicle with an electric version is the business equivalent of making digital versions of company documents and little more. By not adapting the way the business operates, this “digitisation” creates greater inefficiency by duplicating rather than replacing processes.

So it is with the electric vehicle (EV): merely putting these on the road without changing the ecosystem within which they operate, they have little impact on the environment, or on lifestyles. For this reason, numerous EVs that have taken to the road over the past 70 years have vanished not only from the roads, but also from our memories.

Suddenly, that is changing. The success of two brands – the Tesla and the Nissan Leaf – has acted as an On button for an EV revolution.

Nissan Leaf

Nissan Leaf

Tesla is still primarily an American brand, with a network of charging stations focused on California but beginning to spread across the country. Nissan has it heartland in Japan, where charging stations are almost as common as petrol stations. In South Africa, only a few dozen charging stations dot the country.

Globally, however, Nissan is leading the charge. The Leaf is the world’s best-selling EV, with around 300 000 sold in six years of production. That doesn’t sound like much, given that Nissan sold 5.63-million vehicles in total last year. However, it is becoming clear that the first generation Leaf was as much a proof of concept as a pioneering vehicle.

It’s by no means the first EV in production. That legacy belongs to the 1947 Tama, built in a post-war era when oil was scarce and electricity plentiful in Japan. With a top speed of 35km/h and a range of 96km, it was used mainly as a taxi for the next three years. The 1950 Korean war brought with it an oil boom, and electric vehicles became little more than a fanciful notion. Tama’s manufacturer, Tokyo Electro Automobile, became Prince Motors, and then merged with Nissan in 1966.

It was only in the 1990s that the conceot became viable again, when Nissan and Sony jointly developed the first Lithium-ion battery that could be used in a car. In 1997, it debuted in the Prairie Joy EV, which is famed for having been used for Japan’s Arctic Envoronment Research Centre at the North Pole for six years without a mechanical hitch.

An advanced version of that battery was built into the 2000 Hypermini, used for the world’s first vehicle-sharing trials in Yokohama and Ebina. The trials proved the utility of electric vehicles in urban areas, and persuaded Nissan to proceed with development of the Leaf.

Last week, the second generation Leaf was unveiled in Tokyo, highlighting both the evolution of EVs and of the thinking behind their role in urban environment.

Nissan Leaf charging

Nissan Leaf charging

The specs are, of course, the key selling point of the vehicle, and no spec is more important, at this stage in EV history, than range.  The limited range of many EVs has even resulted in a new phrase – “range anxiety” – to describe the stress people feel when they think their vehicle will run out of power before they reach a charging station.

That term may soon be considered quaint. Nissan has more than doubled the range of the Leaf, to 400km from less than 200km. This has required a more dense battery, which takes a little longer to charge than the previous version: 14 hours when plugged into a normal power outlet at home or work, compared to 12 hours before, and 40 minutes at a fast-charge station, compared to 30 minutes before. The trade-off for longer range will be welcomed.

At last week’s world premiere of the new Leaf, however, such improvements had equal billing to Nissans EV philosophy. Its thinking is framed in the concept of Nissan Intelligent Mobility, which rests on three pillars: Intelligent Power, Intelligent Driving and Intelligent Integration.

Daniele Schillaci, executive vice president for global marketing and sales at Nissan, summed up the pillars at the premiere:

“The first pillar is Nissan Intelligent Driving, which gives our customers more confidence through safety, control and comfort. This includes our development of autonomous drive technologies and advanced driving systems.

“The second pillar is Nissan Intelligent Power, which makes the drive more exciting but also cleaner and more efficient. This includes zero-emission and electrification technologies.

“The third pillar is Nissan Intelligent Integration, which connects our vehicles to our wider society.”

The Leaf’s autonomous technology, ProPILOT, is likely to capture headlines for bringing the self-driving vehicle closer to reality.

ProPILOT Assist technology, will be available to customers later this year. ProPILOT Assist reduces the hassle of stop-and-go driving by helping control acceleration, braking and steering during single-lane highway driving.

ProPILOT Assist technology, will be available to customers later this year. ProPILOT Assist reduces the hassle of stop-and-go driving by helping control acceleration, braking and steering during single-lane highway driving.

“Once activated, ProPILOT can  automatically control the steering, acceleration, and brakes using a speed preset by the driver,” said Hideyuki Sakamoto, executive vice president for product engineering. “It is a single-lane autonomous driving technology that you can use on highways.

“The ProPILOT park controls every operation required for parking including acceleration, braking, shifting, turning the steering wheel and applying the parking brake.

“The combination of the world’s first four omnidirectional cameras and 12 ultrasonic sensors enables you to park precisely wherever you wish in just three steps, at a press of your finger.”

However, it is Intelligent Integration which truly sets the Leaf apart from its growing roster of competitors.

N1216_LEAF_infographic2000px

It incorporates vehicle-to-grid and vehicle-to-home systems that allow the car to feed power back into the electricity grid, or to keep a home’s lights and appliances on during a power outage. In Nissan’s hometown of Yokohama, near Tokyo, it is being integrated into city planning.

The future potential is for smart buildings, smart homes and smart cars not only to talk to each other, but also to coordinate resources between them, automatically. Because it extends beyond the car and can have a massive impact on the urban environment at large, intelligent mobility may well represent an even bigger lifestyle shift than self-driving cars. The EV represents the beginning of that shift.

  • Arthur Goldstuck is founder of World Wide Worx and editor-in-chief of Gadget.co.za. Follow him on Twitter and Instagram on @art2gee

2017 Nissan LEAF specifications (Japan model)

Specifications for other regions will be announced at the start of sales.

Exterior 
Overall length (mm) 4,480
Overall width (mm) 1,790
Overall height (mm) 1,540
Wheelbase (mm) 2,700
Track width front/rear (mm) 1,530-1,540/1,545-1,555
Minimum ground clearance (mm) 150
Coefficient of drag (Cd) 0.28
Tires 205/55R16 or 215/50R17
Cargo area (VDA) 435 L
Weight/capacity (kg)
Curb weight 1,490-1,520
Capacity 5 passenger
Gross vehicle weight 1,765-1,795
Battery
Type Li-ion battery
Capacity 40 kWh
Electric motor
Name EM57
Maximum output 110 kW (150 ps)/3283~9795 rpm
Maximum torque 320 N・m (32.6 kgf・m)/0~3283 rpm
Performance
Cruising range 400 km (JC08)
Charging time (normal charging) 16 hours (3 kW)
8 hours (6 kW)
Charging time from alert to 80% (quick charging) 40 minutes

Featured

Veeam passes $1bn, prepares for cloud’s ‘Act II’

Leader in cloud-data management reveals how it will harness the next growth phase of the data revolution, writes ARTHUR GOLDSTUCK

Veeam Software, the quiet leader in backup solutions for cloud data management,has announced that it has passed $1-billion in revenues, and is preparing for the next phase of sustained growth in the sector.

Now, it is unveiling what it calls Act II, following five years of rapid growth through modernisation of the data centre. At the VeeamON 2019conferencein Miami this week, company co-founder Ratmir Timashev declared that the opportunities in this new era, focused on managing data for the hybrid cloud, would drive the next phase of growth.

“Veeam created the VMware backup market and has dominated it as the leader for the last decade,” said Timashev, who is also executive vice president for sales and marketing at the organisation. “This was Veeam’s Act I and I am delighted that we have surpassed the $1 billion mark; in 2013 I predicted we’d achieve this in less than six years. 

“However, the market is now changing. Backup is still critical, but customers are now building hybrid clouds with AWS, Azure, IBM and Google, and they need more than just backup. To succeed in this changing environment, Veeam has had to adapt. Veeam, with its 60,000-plus channel and service provider partners and the broadest ecosystem of technology partners, including Cisco, HPE, NetApp, Nutanix and Pure Storage, is best positioned to dominate the new cloud data management in our Act II.”

In South Africa, Veeam expects similar growth. Speaking at the Cisco Connect conference in Sun City this week, country manager Kate Mollett told Gadget’s BRYAN TURNER that the company was doing exceptionally well in this market.

“In financial year 2018, we saw double-digit growth, which was really very encouraging if you consider the state of the economy, and not so much customer sentiment, but customers have been more cautious with how they spend their money. We’ve seen a fluctuation in the currency, so we see customers pausing with big decisions and hoping for a recovery in the Rand-Dollar. But despite all of the negatives, we have double digit growth which is really good. We continue to grow our team and hire.

“From a Veeam perspective, last year we were responsible for Veeam Africa South, which consisted of South Africa, SADC countries, and the Indian Ocean Islands. We’ve now been given the responsibility for the whole of Africa. This is really fantastic because we are now able to drive a single strategy for Africa from South Africa.”

Veeam has been the leading provider of backup, recovery and replication solutions for more than a decade, and is growing rapidly at a time when other players in the backup market are struggling to innovate on demand.

“Backup is not sexy and they made a pretty successful company out of something that others seem to be screwing up,” said Roy Illsley, Distinguished Analyst at Ovum, speaking in Miami after the VeeamOn conference. “Others have not invested much in new products and they don’t solve key challenges that most organisations want solved. Theyre resting on their laurels and are stuck in the physical world of backup instead of embracing the cloud.”

Illsley readily buys into the Veeam tagline. “It just works”. 

“They are very good at marketing but are also a good engineering comany that does produce the goods. Their big strength, that it just works, is a reliable feature they have built into their product portfolio.”

Veeam said in statement from the event that, while it had initially focused on server virtualisation for VMware environments, in recent years it had expanded this core offering. It was now delivering integration with multiple hypervisors, physical servers and endpoints, along with public and software-as-a-service workloads, while partnering with leading cloud, storage, server, hyperconverged (HCI) and application vendors.

This week, it  announced a new “with Veeam”program, which brings in enterprise storage and hyperconverged (HCI) vendors to provide customers with comprehensive secondary storage solutions that combine Veeam software with industry-leading infrastructure systems. Companies like ExaGrid and Nutanix have already announced partnerships.

Timashev said: “From day one, we have focused on partnerships to deliver customer value. Working with our storage and cloud partners, we are delivering choice, flexibility and value to customers of all sizes.”

Continue Reading

Featured

‘Energy scavenging’ funded

As the drive towards a 5G future gathers momentum, the University of Surrey’s research into technology that could power countless internet enabled devices – including those needed for autonomous cars – has won over £1M from the Engineering and Physical Sciences Research Council (EPSRC) and industry partners.

Surrey’s Advanced Technology Institute (ATI) has been working on triboelectric nanogenerators (TENG), an energy harvesting technology capable of ‘scavenging’ energy from movements such as human motion, machine vibration, wind and vehicle movements to power small electronic components. 

TENG energy harvesting is based on a combination of electrostatic charging and electrostatic induction, providing high output, peak efficiency and low-cost solutions for small scale electronic devices. It’s thought such devices will be vital for the smart sensors needed to enable driverless cars to work safely, wearable electronics, health sensors in ‘smart hospitals’ and robotics in ‘smart factories.’ 

The ATI will be partnered on this development project with the Georgia Institute of Technology, QinetiQ, MAS Holdings, National Physical Laboratory, Soochow University and Jaguar Land Rover. 

Professor Ravi Silva, Director of the ATI and the principal investigator of the TENG project, said: “TENG technology is ideal to power the next generation of electronic devices due to its small footprint and capacity to integrate into systems we use every day. Here at the ATI, we are constantly looking to develop such advanced technologies leading towards our quest to realise worldwide “free energy”.

“TENGs are an ideal candidate to power the autonomous electronic systems for Internet of Things applications and wearable electronic devices. We believe this research grant will allow us to further the design of optimized energy harvesters.”

Continue Reading

Trending

Copyright © 2019 World Wide Worx