Connect with us

Cars

Big change for tyre biz

Technology-driven change will radically change all aspects of tyre design and production, to the benefit of drivers, says DRIES LOTTERING, Manufacturing Renewal Executive, Bridgestone South Africa.

Much of the innovation in manufacturing will soon become synonymous with the Fourth Industrial Revolution (4IR), and the impact that robotics, artificial intelligence and the Internet of Things will have on production processes, and possible job losses. There is no doubt that these impacts will be profound—but they need not be negative.

As regards job cuts; while there is no denying that many unskilled jobs will ultimately be at threat, in general 4IR is likely to produce more jobs than it destroys—but they will be different types of job. The trick here will be to develop clear strategies for helping existing work forces make the transition, bearing in mind that there are likely to be more than one. It will be necessary to identify those that can adapt frequently to become part of a “liquid” workforce.

Learning to work alongside, and “manage”, robots is likely to be one of the immediate challenges for workers on production lines.

But perhaps more exciting is the impact that machine learning and artificial intelligence, combined with the expanded range of capabilities that sophisticated robotics will bring, will have on the design and production of new products. The R&D teams at leading tyre manufacturers like Bridgestone are continuously working on new ideas that the emerging 4IR technologies will make possible, and there is no doubt that current innovation initiatives will gain strength.

One of the ongoing challenges in the tyre world is to design and then produce tyres better suited to driving conditions. One example would be a tyre that would enable motorists in geographical areas experiencing a wide range of climatic conditions to use the same tyre the whole year round. At present, in certain parts of Europe and the North America, it is necessary to change tyres in winter to cope with snow and icy. The quest is on for a tyre designed to cope with all weather conditions, and very likely made of a new material.

Another goal is a low rolling resistance tyre; that is, one that requires less energy to roll and thus is more fuel efficient. These are already on the market, but the pressure to reduce energy use in an effort to boost sustainability is unremitting. In similar vein, tyre companies’ R&D teams are continuously searching for new ways to recycle tyres, and to find new materials, that will reduce environmental damage.

Then, of course, there is the impact of electric and driverless vehicles, which will require totally new approaches to tyre design. For example, how will a driverless vehicle change a flat or damaged tyre? Could 3-D printing be used to effect repairs or even, in true futuristic mode, reconfigure tyre tread for a change in terrain, based on alerts from the satellite navigation system?

When it comes to tyres for electric vehicles, a whole new set of requirements, some apparently contradictory, come into play. Low rolling resistance is one, but so is high torque at low speeds, not to forget high load capability to accommodate the weight of large batteries. The lighter vehicles and virtually soundless engines will mean that reducing tyre noise in urban settings will become critical.

Another concept is “tyres as a service”. This would combine the smart car concept with an array of sensors to enable continuous monitoring of tyre condition and pressure, in conjunction with the general condition of the car. The end goal would be that motorists would never buy a tyre again, but rather subscribe to a service that fitted tyres, monitored them continuously, was on hand to make repairs as needed and fit new tyres at the correct time—all for a monthly fee.

These are just some of the innovations in the pipeline or on the drawing board, and the 4IR will contribute to making them a reality, and to inspiring more. And, to return to where we began, the other side of the coin is that these and other innovations will need to the kind of smart factories that 4IR will enable. In all cases, as noted, the key will be to prepare today’s work forces to make the transition.

Continue Reading

Cars

Two-thirds of adults ready for cars that drive themselves

The latest Looking Further with Ford Trends Report reveals that behaviour is changing across key areas of our lives

Self-driving cars are a hot topic today, but if you had to choose, would you rather your children ride in an autonomous vehicle or drive with a stranger? You may be surprised to learn that 67 per cent of adults globally would opt for the self-driving car.

That insight is one of many revealed in the 2019 Looking Further with Ford Trend Report, released last week. The report takes a deep look into the drivers of behavioural change, specifically uncovering the dynamic relationships consumers have with the shifting landscape of technology.

Change is not always easy, particularly when it is driven by forces beyond our control. In a global survey of 14 countries, Ford’s research revealed that 87 per cent of adults believe technology is the biggest driver of change. And while 79 per cent of adults maintain that technology is a force for good, there are large segments of the population that have significant concerns. Some are afraid of artificial intelligence (AI). Others fear the impact of technology on our emotional wellbeing.

“Individually and collectively, these behavioural changes can take us from feeling helpless to feeling empowered, and unleash a world of wonder, hope and progress,” says Kuda Takura, smart mobility specialist at Ford Motor Company of Southern Africa. “At Ford we are deeply focused on human-centric design and are committed to finding mobility solutions that help improve the lives of consumers and their communities. In the context of change, we have to protect what we consider most valuable – having a trusted relationship with our customers. So, we are always deliberate and thoughtful about how we navigate change.”

Key insights from Ford’s 7th annual Trends Report:

Almost half of people around the world believe that fear drives change
Seven in 10 say that they are energised by change
87 per cent agree that technology is the biggest driver of today’s change
Eight in 10 citizens believe that technology is a force for good
45 per cent of adults globally report that they envy people who can disconnect from their devices
Seven out of 10 consumers agree that we should have a mandatory time-out from our devices

Click here to read more about the seven trends for 2019.

Previous Page1 of 2

Continue Reading

Cars

At last, cars talk to traffic lights to catch ‘green wave’

By ANDRE HAINZLMAIER, head of development of apps, connected services and smart city at Audi.

Stop-and-go traffic in cities is annoying. By contrast, we are pleased when we have a “green wave” – but we catch them far too seldom, unfortunately. With the Traffic Light Information function, drivers are more in control. They drive more efficiently and are more relaxed because they know 250 meters ahead of a traffic light whether they will catch it on green. In the future, anonymized data from our cars can help to switch traffic lights in cities to better phases and to optimise the traffic flow.

In the USA, Audi customers have been using the “Time-to-Green” function for two years: if the driver will reach the lights on red, a countdown in the Audi virtual cockpit or head-up display counts the seconds to the next green phase. This service is now available at more than 5,000 intersections in the USA, for example in cities like Denver, Houston, Las Vegas, Los Angeles, Portland and Washington D.C. In the US capital alone, about 1,000 intersections are linked to the Traffic Light Information function.

Since February, Audi has offered a further function in North America. The purpose of this is especially to enable driving on the “green wave”. “Green Light Optimized Speed Advisory” (GLOSA) shows to the driver in the ideal speed for reaching the next traffic light on green.

Both Time-to-Green and GLOSA will be activated for the start of operation in Ingolstadt in selected Audi models. These include all Audi e-tron models and the A4, A6, A7, A8, Q3, Q7 and Q8 to be produced from mid-July (“model year 2020”). The prerequisite is the “Audi connect Navigation & Infotainment” package and the optional “camera-based traffic sign recognition”.

Why is this function becoming available in Europe two years later than in the USA? 

The challenges for the serial introduction of the service are much greater here than, for example, in the USA, where urban traffic light systems were planned over a large area and uniformly. In Europe, by contrast, the traffic infrastructure has developed more locally and decentrally – with a great variety of traffic technology. How quickly other cities are connected to this technology depends above all on whether data standards and interfaces get established and cities digitalise their traffic lights.

On this project, Audi is working with Traffic Technology Services (TTS). TTS prepares the raw data from city traffic management centres and transmits them to the Audi servers. From here, the information reaches the car via a fast Internet connection.

Audi is working to offer Traffic Light Information in further cities in Germany, Europe, Canada and the USA in the coming years. In the large east Chinese city of Wuxi, Audi and partners are testing networks between cars and traffic light systems in the context of a development project.

In future, Audi customers may be able to benefit from additional functions, for example when “green waves” are incorporated into the ideal route planning. It is also conceivable that Audi e-tron models, when cruising up to a red traffic light, will make increased used of braking energy in order to charge their batteries. Coupled with predictive adaptive cruise control (pACC), the cars could even brake automatically at red lights.

In the long term, urban traffic will benefit. When cars send anonymised data to the city, for example, traffic signals could operate more flexibly. Every driver knows the following situation: in the evening you wait at a red light – while no other car is to be seen far and wide. Networked traffic lights would then react according to demand. Drivers of other automotive brands will also profit from the development work that Audi is carrying out with Traffic Light Information – good news for cities, which are dependent on the anonymised data of large fleets to achieve the most efficient traffic management.

In future, V2I technologies like Traffic Light Information will facilitate automated driving. 

A city is one of the most complex environments for an autonomous car. Nevertheless, the vehicle has to be able to handle the situation, even in rain and snow. Data exchange with the traffic infrastructure can be highly relevant here. 

Continue Reading

Trending

Copyright © 2019 World Wide Worx