Connect with us

Featured

Battery revolution upon us

Published

on

Although the evolution of the lithium-ion battery has been slow in the past few years, there are some new opportunities and potential markets in the industry for companies to take advantage of, writes DR XIAOXI HE, Technology Analyst, IDTechEx.

Many interests have been raised within the battery business in 2015 through a number of activities: the launch of Tesla’s Powerwall with low prices supported by the capability of Gigafactory, Apple’s patent relating to charging and managing power in a device with solid-state batteries, LG Chem’s opening of a mega battery plant in Nanjing, Bosch’s purchase of polymer solid-state battery company Seeo, etc. Not to mention the tremendous number of investment, acquisitions, partnerships and joint ventures.

At the same time, new battery technologies are appearing continuously with descriptions like “doubled performance”, “charged in a few minutes”, “cost reduction of more than 70%”, making the public even more confused about the real breakthroughs. However, one can provide a clear perspective of emerging technologies, new opportunities and potential markets in the battery industry.

unnamed

Opportunities can be found from different dimensions

Since the first introduction by Sony in the 1990s, lithium-ion batteries have become one of the most familiar and common battery technologies in our life. The involving technologies are relatively mature and the facilities are in place. With the expansion of existing manufacturing plants by battery giants such as Samsung SDI, LG Chem and Panasonic, economy of scale will be further achieved. However, with so many advantages, the improvement of lithium-ion batteries is slow compared with other electronic components, both in terms of performance and cost reduction. The liquid electrolyte used in the traditional lithium-ion batteries may cause serious safety concerns. On the other hand, with the development of wearable devices, printed electronics, Internet of Things (IoT), robotics and electric vehicles, batteries with more features, more powerful performances and lower costs are required. Those factors have motivated players to find bigger opportunities.

unnamed-1

Therefore, the battery industry is explored based on a number of different dimensions. Interests have been aroused in:

      Thin-film batteries (based on thickness)

      Micro-batteries and large-area batteries (based on size)

      Flexible batteries (based on mechanical properties)

      Special-shape batteries (based on form factors)

      Printed batteries (based on manufacturing methods)

      Solid-state, lithium anode, silicon anode batteries (based on technologies)

      Energy storage system (ESS) and electric vehicle (EV) applications (based on applications)

All the areas listed above indicate new opportunities. Those areas may be influenced by each other and may have some overlap. For instance, batteries with better technologies may be used in ESS and EV applications, providing better safety and better performance. A thin-film battery is also flexible, and can be made by printing, or based on all solid-state components, or be very small. Market growth of these areas is affected by the costs. Except the last one (ESS and EV applications), the others are also limited significantly by technology maturity. The IDTechEx Research report “Flexible, Printed and Thin Film Batteries 2016-2026: Technologies, Markets, Players” focuses on the first 4 areas as well as solid-state batteries with these features.

Further cost reduction may not rely on technology improvement

Battery technology improvement is based on electrochemical restriction and it is difficult to have sudden significant breakthroughs. In addition, a practical battery is a combination of many considerations including, but not limited to, energy density, power density, lifetime, safety and cost. Many press releases may emphasis one or several improvements but avoid talking about the others. Most existing commercial batteries are already based on relatively mature, proven technologies, but some of them are not well-known. Examples include thin-film solid-state batteries and printed batteries. As the battery development is a long and difficult process, future battery cost reduction are mainly rely on economy of scale, little on technology improvement.

Regulations and policies play a significant role in large deployment

In May 2013 the German market incentive program for battery storage systems was introduced which changed the residential battery installation structure immediately, with 2,700 installations to enjoy the incentives in 2013, jumping to 13,100 by 2015. Also, China’s decision to remove subsidies for nickel manganese cobalt (NMC) batteries for electric buses also crucially influenced this industry. It indicated that for ESS or EV applications, self-sustainability has not been fully achieved and therefore policy changes can affect them greatly.

Batteries with new technologies will be tried in small gadgets first

Large devices or systems generally require high reliability and safety. Therefore, new battery technologies will tend not to be applied in them initially or in short-term period. Toyota, for example said in January of 2014 that it was working on solid-state battery technologies for cars, but the firm did not expect to have a product within a decade.

Apple also paid lots of attention in solid-state batteries, but it is focusing on portable electronics /wearables /MEMs applications. As early as 2013, the US Patent & Trademark Office already published a patent application from Apple that revealed charging techniques for solid-state batteries. In early 2014, Apple bought all the patents from Infinite Power Solutions after it stopped trading, a company previous working on solid-state thin-film batteries. In November 2015, Apple published another patent related to thin-film solid-state batteries.

In solid-state lithium ion batteries, both the electrodes and the electrolyte are solid-state. Solid-state electrolyte normally behaves as the separator as well. It is safer, especially for those with inorganic solid electrolyte (all organic electrolytes are flammable, no matter whether solid or liquid). Solid-state electrolytes allow scaling due to the elimination of certain components (e.g. separator and casing). Therefore, they can potentially be made with a higher energy density. In addition, they are more resistant to changes in temperature and physical damages occurred during usage. Therefore they can handle more charge/discharge cycles before degradation, promising a longer life time. Due to the flexibility of the casing and without the limitation of liquid electrolyte, solid-state batteries can be made into different form factors, sizes and shapes.

However, the ionic conductivities of solid-state batteries at room temperatures are generally low. In addition, they usually have high internal resistance due to the unstable solid electrolyte interface (SEI). Most solid-state batteries suffer from low C-rate and may not be able work at room temperature. Examples include 3000 taxis in France with solid-state batteries working at elevated temperatures. Also, solid-state batteries are much more expensive. The current low C-rate, low power makes them suitable to be applied in small devices earlier.

Thinness, flexibility and printed possibility will be the most addressed features

As new battery technologies will be applied in small electronic gadgets first, new features beyond traditional capabilities such as thinness, flexibility and printed Possibility will be addressed. According to IDTechEx Research in the report “Flexible, Printed and Thin Film Batteries 2016-2026: Technologies, Markets, Players”, there are other technologies that can make thin, flexible and printed batteries besides solid-state batteries, such as printed carbon zinc batteries and thin lithium-ion pouch batteries.

The total market of thin, flexible and printed batteries will reach $471 million by 2026. Most of those batteries are for small or mediate power devices and focus on form factor, thickness, size and manufacturing aspects, but they share technologies that can be used for other applications. Similar to the development roadmap of traditional lithium-ion batteries from consumer electronics to EV and ESS, batteries with new technologies may target consumer electronics as the initial entry. Even bigger opportunities for new technologies will come after approval in these applications.

For traditional battery technologies, demand is further created in the EV and ESS sectors as the growth in consumer electronics is approaching a plateau. Cost reduction is the key.

Featured

Kenya tool to help companies prepare for emergencies

After its team members survived last week’s Nairobi terror attack, Ushahidi decided to release a new preparedness tool for free, writes its CEO, NAT MANNING

Published

on

On Tuesday I woke up a bit before 7am in Berkeley, California where I live. I made some coffee and went over to my computer to start my work day. I checked my Slack and the news and quickly found out that there was an ongoing terrorist attack at 14 Riverside Complex in Nairobi, Kenya. The Ushahidi office is in Nairobi and about a third of our team is based there (the rest of us are spread across 10 other countries).

As I read the news, my heart plummeted, and I immediately asked the question, “is everyone on my team okay?”

Five years ago Al-Shabaab committed a similar attack at the Westgate Mall. We spent several tense hours figuring out if any of our team had been in the mall, and verifying that everyone was safe. We found out that one of our team member’s family was caught up in the attack. Luckily they made it out.

At Ushahidi we make software for crisis response, including tools to map disasters and election violence, and yet we felt helpless in the face of this attack. In the days following the Westgate attack, our team huddled and thought about what we could build that would help our team — and other teams — if we found ourselves in a similar situation to this attack again. We identified that when we first learned of the attack, nearly everyone at Ushahidi had spent that first precious few hours trying to answer the basic questions, “Is everyone okay?”, and if not, “Who needs help?” 

People had ad-hoc used multiple channels such as WhatsApp, called, emailed, or texted. We had done this for each person at Ushahidi (their job), in our families, and important people in our community. Our process was unorganised, inefficient, repetitive, and frustrating.

And from this problem we created TenFour, a check in tool that makes it easier for teams to reach one another during times of crisis. It is a simple application that lets people send a message to their team via SMS, Slack, Voice, email, and in-app, and get a response. It also works for educational institutions, companies with distributed staff, as well as part of neighbourhood networks like neighbourhood watches.

This week when I woke up to the news of the attack at Riverside, I immediately opened up the TenFour app.

Click here to read how Nat quickly confirmed the safety of his team.

Previous Page1 of 3

Continue Reading

Featured

Kia multi-collision airbags

Published

on

The world’s first multi-collision airbag system has been unveiled by Hyundai Motor Group subsidiary KIA Motors, with the aim of improving airbag performance in multi-collision accidents.

Multi-collision accidents are those in which the primary impact is followed by collisions with secondary objects, such as other vehicles, trees, or electrical posts, which occur in three out of every 10 accidents. Current airbag systems do not offer secondary protection when the initial impact is insufficient to cause them to deploy. 

However, the multi-collision airbag system allows airbags to deploy effectively upon a secondary impact, by calibrating the status of the vehicle and the occupants.

The new technology detects occupants’ positions in the cabin following an initial collision. When occupants are forced into unusual positions, the effectiveness of existing safety technology may be compromised. Multi-collision airbag systems are designed to deploy even faster when initial safety systems may not be effective, providing additional safety when drivers and passengers are most vulnerable. By recalibrating the collision intensity required for deployment, the airbag system responds more promptly during the secondary impact, thereby improving the safety of multi-collision vehicle occupants.

“By improving airbag performance in multi-collision scenarios, we expect to significantly improve the safety of our drivers and passengers,” said Taesoo Chi, head of the Hyundai Motor Group’s Chassis Technology Centre. “We will continue our research on more diverse crash situations as part of our commitment to producing even safer vehicles that protect occupants and prevent injuries.”

According to statistics by the National Automotive Sampling System Crashworthiness Data System (NASS-CDS), an office of the National Highway Traffic Safety Administration (NHTSA) in USA, about 30% of 56,000 vehicle accidents from 2000 to 2012 in the North American region involved multi-collisions. The leading type of multi-collision accidents involved cars crossing over the centre line (30.8%), followed by collisions caused by a sudden stop at highway tollgates (13.5%), highway median strip collisions (8.0%), and sideswiping and collision with trees and electric poles (4.0%). 

These multi-collision scenarios were analysed in multilateral ways to improve airbag performance and precision in secondary collisions. Once commercialised, the system will be implemented in future new KIA vehicles. 

Continue Reading

Trending

Copyright © 2018 World Wide Worx