Connect with us

Featured

IoT takes pulse of nature

Published

on

The Internet of Things and other mobile tech offers us the ability to advance our efforts in preserving and saving the environment, writes RESHAAD SHA, Chief Executive Officer, SqwidNet.

Humanity today finds itself living in what is defined as the ‘Anthropocene Age’, or the age of man. This is characterised by the massive environmental modifications occurring on Earth, encompassing such issues as climate change and the rapid loss of biodiversity. Fortunately, there is another age we are also living in at present, namely the ‘Information Age’, where the Internet, social networks, mobile devices and incredible computing power mean that people and things are being more connected than at any time in the past.

The latter clearly offers humanity a huge opportunity to change the impact of the former, as there is enormous potential for data analytics and technology to play a major role in monitoring, modelling and responding to the challenges of global biodiversity loss and climate change. The rise of the Internet of Things (IoT) in particular, provides us with an opportunity to continuously monitor the pulse of the natural world.

The IoT has taken off, thanks to cost effective, production at scale of high-tech sensors that enable scientists to capture more comprehensive and complete data in a more contextual, frequent and secure manner than was previously possible.

There are, in fact, multitudes of ways that the IoT is enabling more frequent monitoring of the natural environment, and on a much larger spatial scale. Sensors today allow for finer resolution monitoring to take place in previously inaccessible or dangerous locations, as these allow for the automated capture of data. This means that once activated, these devices require minimal further human involvement. It is obvious that solutions such as these offer clear benefits to conservation science and management.

Ultimately, being able to gather and analyse vast amounts of data rapidly will enable humanity to close the environmental loop, as it will allow us to find out what the consequences of our actions are and thus ensure we take smarter actions as a result. Of course, the environment is a vast and complex entity, so the first question we will need to answer is what do we want to measure? Once we know this, we need to decide what we do with this data and – once we have used the data – how we can manage things differently, based on this information.

Real world applications

The good news is that there are scientists and conservationists out there already hard at work using the IoT to answer these questions. Spain offers a fantastic example of how to save a species on the verge of extinction, using technology. At the turn of the century, there were fewer than 100 Iberian lynxes left. Thanks to a cutting edge captive breeding centre, the numbers within this critically endangered species have more than tripled and it is now being reintroduced into safe habitats, as a second stage of this repopulation effort.

Today, these lynxes are tracked with location collars that geo-reference individual animals in the same manner as an asset management system would. This enables scientists to study behavioural uses of space and territories by these animals in the wild. In addition, connected drones are used to provide additional monitoring, to see how they are doing from a distance. The next step is to move away from the current battery-dependant collars to subcutaneous sensors that would remain under the lynx’s skin for its entire lifetime.

Another good example of IoT-related conservation is the efforts being put in place by the Sigfox Foundation. Its parent company, Sigfox, has recently partnered with Dark Fibre Africa to launch SqwidNet, an IoT network that is built on Sigfox technology. The Foundation is currently using connected sensors to assist conservationists in better monitoring rhino populations, since there are only estimated to be around 29 000 individual animals left.

Although still in prototype form, it uses a GPS tracker that is implanted in the horns of the rhinos, which securely sends out three GPS signals per day via the Sigfox network, on a dedicated secured platform. By knowing the exact locations of these animals, the conservationists are thus better able to protect them. The end goal, naturally, is to produce 29 000 connected sensors to monitor all the living rhinos around the world.

Just a few months ago, there was much ado about three male lions that escaped from the Kruger Park. Despite valiant attempts to find and bring them back to the reserve, two were killed by a farmer after he discovered they had killed one of his cattle, and the third was put down by SA National Parks staff.

This sad story serves to illustrate yet again the benefits of location tracking and real-time IoT connectivity. Had these lions been tagged the way the rhinos in the Sigfox project are, it would have been easy to determine where these animals were at any given time, and SAN Parks staff could have darted them and returned them to Kruger long before they attacked any cattle.

Of course, the three examples given above are just some of the more basic methods conservationists are using to improve the natural world. Many others can also be cited, including initiatives whereby drones are being used as an anti-poaching measure, or where GPS-tagged sharks not only provide scientists with invaluable information about the animals themselves, but the tags can also tweet the locations of these fish to nervous beach-goers. Remote camera traps are starting to lead to the discovery or rediscovery of species in inaccessible regions while still others are using this technology to enable the monitoring of illegal fishing.

The IoT and other modern technologies clearly offer humanity the chance to significantly change the game as far as conservation goes, giving us the tools to tackle some of the trickiest problems facing the natural environment. By properly leveraging the benefits of the Information Age, we at last have the opportunity to eliminate some the greatest challenges posed by the Anthropocene Age.

Featured

Huawei Mate 20 unveils ‘higher intelligence’

The new Mate 20 series, launching in South Africa today, includes a 7.2″ handset, and promises improved AI.

Published

on

Huawei Consumer Business Group today launches the Huawei Mate 20 Series in South Africa.

The phones are powered by Huawei’s densest and highest performing system on chip (SoC) to date, the Kirin 980. Manufactured with the 7nm process, incorporating the Cortex-A76-based CPU and Mali-G76 GPU, the SoC offers improved performance and, according to Huawei, “an unprecedented smooth user experience”.

The new 40W Huawei SuperCharge, 15W Huawei Wireless Quick Charge, and large batteries work in tandem to provide users with improved battery life. A Matrix Camera System includes a  Leica Ultra Wide Angle Lens that lets users see both wider and closer, with a new macro distance capability. The camera system adopts a Four-Point Design that gives the device a distinct visual identity.

The Mate 20 Series is available in 6.53-inch, 6.39-inch and 7.2-inch sizes, across four devices: Huawei Mate 20, Mate 20 Pro, Mate 20 X and Porsche Design Huawei Mate 20 RS. They ship with the customisable Android P-based EMUI 9 operating system.

“Smartphones are an important entrance to the digital world,” said Richard Yu, CEO of Huawei Consumer BG, at the global launch in London last week. “The Huawei Mate 20 Series is designed to be the best ‘mate’ of consumers, accompanying and empowering them to enjoy a richer, more fulfilled life with their higher intelligence, unparalleled battery lives and powerful camera performance.”

The SoC fits 6.9 billion transistors within a die the size of a fingernail. Compared to Kirin 970, the latest chipset is equipped with a CPU that is claimed to be 75 percent more powerful, a GPU that is 46 percent more powerful and an NPU (neural processing unit) that is 226 percent more powerful. The efficiency of the components has also been elevated: the CPU is claimed to be 58 percent more efficient, the GPU 178 percent more efficient, and the NPU 182 percent more efficient. The Kirin 980 is the world’s first commercial SoC to use the Cortex-A76-based cores.

Huawei has designed a three-tier architecture that consists of two ultra-large cores, two large cores and four small cores. This allows the CPU to allocate the optimal amount of resources to heavy, medium and light tasks for greater efficiency, improving the performance of the SoC while enhancing battery life. The Kirin 980 is also the industry’s first SoC to be equipped with Dual-NPU, giving it higher On-Device AI processing capability to support AI applications.

Read more about the Mate 20 Pro’s connectivity, battery and camera on the next page. 

Previous Page1 of 2

Continue Reading

Featured

How Quantum computing will change … everything?

Research labs, government agencies (NASA) and tech giants like Microsoft, IBM and Google are all focused on developing quantum theories first put forward in the 1970s. What’s more, a growing start-up quantum computing ecosystem is attracting hundreds of millions of investor dollars. Given this scenario, Forrester believes it is time for IT leaders to pay attention.

Published

on

“We expect CIOs in life sciences, energy, defence, and manufacturing to see a deluge of hype from vendors and the media in the coming months,” says Forrester’s Brian Hopkins, VP, principal analyst serving CIOs and lead author of a report: A First Look at Quantum Computing. “Financial services, supply-chain, and healthcare firms will feel some of this as well. We see a market emerging, media interest on the rise, and client interest trickling in. It’s time for CIOs to take notice.”

The Forrester report gives some practical applications for quantum computing which helps contextualise its potential: 

  • Security could massively benefit from quantum computing. Factoring very large integers could break RSA-encrypted data, but could also be used to protect systems against malicious attempts. 
  • Supply chain managers could use quantum computing to gather and act on price information using minute-by-minute fluctuations in supply and demand 
  • Robotics engineers could determine the best parameters to use in deep-learning models that recognise and react to objects in computer vision
  • Quantum computing could be used to discover revolutionary new molecules making use of the petabytes of data that studies are now producing. This would significantly benefit many organisations in the material and life sciences verticals – particularly those trying to create more cost-effective electric car batteries which still depend on expensive and rare materials. 

Continue reading to find out how Quantum computing differs.

Previous Page1 of 3

Continue Reading

Trending

Copyright © 2018 World Wide Worx