Connect with us

Featured

How to reclaim identity in virtual world

Published

on

We’re bringing information and devices online at an unprecedented rate, raising one of the fundamental questions of our time: how do we represent ourselves in this digital world that we are creating? And more importantly, how do we secure our identity in a digital world? We’ve heard about blockchain for currencies and smart contracts, a compelling and crucial application is in securing online identity.

SAP Africa’s Head of Innovation and South Africa’s Mars One candidate, Dr Adriana Marais, talks about taking back ownership of our identities in the digital world, through the application of blockchain.

For four billion years, the genetic code has been life’s data store- containing not only instructions for but also the lineage of all terrestrial life. Over the past few hundred thousand years, a new species has emerged, one that is rapidly and inexhaustibly producing huge volumes of data of their own: humans.

A brief history of humanity’s data affair

We have observed the world and made sense of it through language for as long as we’ve existed. Armed with the technologies we developed, we peered inside atoms and learned something about the behaviour of the fundamental particles including electrons and photons that we have found there. Developing capabilities to manipulate collections of these units of electricity and light has led to a series of technological revolutions that has had a fundamental impact on how we store, analyse and communicate information about our world.

The network of networks, the Internet, has evolved over time from a range of contributing developments by mathematicians, scientists and engineers. In each decade from the 1940s inventions included the transistor, the computer, computer networks, remote access to computing power, software and documents, and finally by the mid-1990s, commercial service providers ensured increasingly global connectivity. Near-instant text and audio-visual communication, and the emergence of social media and online services across industries, have vastly transformed our society in a remarkably short space of time.

The benefits of increased connectivity come with the associated risk around how the information that we create, communicate and store can be intercepted, sometimes with malicious intent. Cryptography is the ancient art of achieving confidentiality by transforming a message such that is only intelligible to someone in possession of a key. Since the emergence of the Internet, a multitude of algorithms for data security have been developed, and global standards for encryption protocols provide some level of communications security over our computer networks.

Just months after the financial crash of 2008, the first digital currency to employ cryptography to solve the problem of double-spending without the requirement for a central trusted third party was proposed. That currency was Bitcoin, now valued at over USD 100 billion, and one of over 1000 different crypto-currencies. The technology underlying this decentralised capability is a distributed ledger, or blockchain. Transactions are recorded in blocks that are linked and secured by cryptography, these records are verified and stored across a network making the ledger resistant to modification.

The really interesting part is that blockchain, this combination of capabilities in computing, connectivity and cryptography, has applications not only in the financial world, but in any transactional environment, including for a decentralised personal data management system that ensures users own and control their data.

Ups and downs: the risks of exponential data

As of this year, the digital world’s data content is estimated at billions of terabytes, or zettabytes, 90% of which has been created since 2016. Information is an increasingly valuable commodity, and its acquisition, analysis and trade plays an important role across industries. And with one quarter of the world’s population using Facebook every month in 2017, a lot of this data is personal.

The rise of social media has led to new conceptualisations and discussions around identity, as we build representations of ourselves online. On the other hand, information about ourselves that we did not intend to be shared or distributed is also contributing to our digital profiles. Any organisation with stores of personal data can be hacked, be negligent, or even sell this data to external parties for profit, resulting in outcomes that range from spam to identity theft.

In 2013 and 2014, three billion Yahoo! accounts were hacked in what was the highest-profile digital identity breach at the time. In South Africa, more than 30 million identity numbers and other associated financial information was leaked online only last year. Regulators have been swift in their response: personal data protection regulations such as the European GDPR or South African POPI Act carry severe penalties to companies who act recklessly or even negligently with personal data.

Stunning revelations surrounding Facebook’s sharing of up to 87 million members’ data to a third party in the service of the last US presidential election has caused shockwaves across the world, wiping $100-billion off its market capitalisation and leading some analysts to speculate around fines that could amount to $2-trillion – 100 times larger than the biggest corporate fine in history.

One definition of personal data is an economic asset generated by the identities and behaviours of individuals, and the monetisation potential of its (mis)use is astounding. Services like messaging, search and navigation may appear free to use, but they actually come at a cost: your personal data, or perhaps more aptly called your consumer data. Because as has been said, if you’re not paying, you’re not the customer; you’re the product. The question of how to verify, secure and manage identity and personal data online is more pertinent today than ever before.

The strongest link in the (block)chain

Identification provides a foundation for human rights. An estimated 1.1 billion people worldwide cannot officially prove their identity, and we simply don’t know how many of the world’s more than 200 million migrants, 21.3 million refugees, or 10 million stateless persons have some form of identification. The World Bank estimates that 78% of these unidentified people are from sub-Saharan Africa and Asia.

The recent Blockchain Africa Conference in Johannesburg brought together like-minded innovators. Global Consent, based in Cape Town, is one such local player doing exciting things in the identity space. Consent is developing a blockchain-based trust protocol to independently authenticate identity and selectively exchange personal information. Consent is also the first Sovrin steward in Africa. Sovrin is the world’s first publicly available distributed ledger dedicated to digital identity. The code base of Sovrin is part of the open source Hyperledger project, which is governed by the Linux Foundation and backed by corporates including SAP, IBM, NTT and Intel. The infrastructure for ensuring consensus, security and trust around identity transactions on the Sovrin network is provided by globally distributed stewards like Consent, who independently own and operate nodes on the network.

Blockchain has impressive applications in a transactional environment, in this context enabling individuals to own and control their identities online in a decentralised personal data management system where records are verified and stored across a network making the ledger resistant to modification. Like any network, the strength of a blockchain-enabled personal data management system depends in part on its size. And given the size of the problem of personal identification in Africa, both online and off, we can look forward to ongoing discussion and adoption of technologies like blockchain to meet this challenge going forward.

So… Developments in computing, connectivity and cryptography, have resulted in blockchain, the technological confluence of the three, with exciting applications in identification and securing personal data online. However, we live in the physical world, and biometric data will need to support the initial registration of an individual on such a system. A candidate for advanced biometric identity verification is a naturally occurring structure, which could also be the future of data storage, with a remarkable 700 terabyte capacity per gram- the ultimate unique identifier.

This structure is the DNA molecule, and despite significant achievements like determining its structure and sequence, science continues to grapple with the computational complexity of understanding life. The role of large portions of determined sequences remain a complete mystery. Life, and in particular humanity, is arguably the most mysterious phenomenon we have ever encountered, and we have a long way to go in terms of fully understanding ourselves. One thing we have arrived at, is a solution to taking back ownership of our identities in the digital world we are creating, through the compelling application of blockchain in the digital identity space.

Featured

Prepare your cam to capture the Blood Moon

On 27 July 2018, South Africans can witness a total lunar eclipse, as the earth’s shadow completely covers the moon.

Published

on

Also known as a blood or red moon, a total lunar eclipse is the most dramatic of all lunar eclipses and presents an exciting photographic opportunity for any aspiring photographer or would-be astronomers.

“A lunar eclipse is a rare cosmic sight. For centuries these events have inspired wonder, interest and sometimes fear amongst observers. Of course, if you are lucky to be around when one occurs, you would want to capture it all on camera,” says Dana Eitzen, Corporate and Marketing Communications Executive at Canon South Africa.

Canon ambassador and acclaimed landscape photographer David Noton has provided his top tips to keep in mind when photographing this occasion.   In South Africa, the eclipse will be visible from about 19h14 on Friday, 27 July until 01h28 on the Saturday morning. The lunar eclipse will see the light from the sun blocked by the earth as it passes in front of the moon. The moon will turn red because of an effect known as Rayleigh Scattering, where bands of green and violet light become filtered through the atmosphere.

A partial eclipse will begin at 20h24 when the moon will start to turn red. The total eclipse begins at about 21h30 when the moon is completely red. The eclipse reaches its maximum at 22h21 when the moon is closest to the centre of the shadow.

David Noton advises:

  1. Download the right apps to be in-the-know

The sun’s position in the sky at any given time of day varies massively with latitude and season. That is not the case with the moon as its passage through the heavens is governed by its complex elliptical orbit of the earth. That orbit results in monthly, rather than seasonal variations, as the moon moves through its lunar cycle. The result is big differences in the timing of its appearance and its trajectory through the sky. Luckily, we no longer need to rely on weight tables to consult the behaviour of the moon, we can simply download an app on to our phone. The Photographer’s Ephemeris is useful for giving moonrise and moonset times, bearings and phases; while the Photopills app gives comprehensive information on the position of the moon in our sky.  Armed with these two apps, I’m planning to shoot the Blood Moon rising in Dorset, England. I’m aiming to capture the moon within the first fifteen minutes of moonrise so I can catch it low in the sky and juxtapose it against an object on the horizon line for scale – this could be as simple as a tree on a hill.

 

  1. Invest in a lens with optimal zoom  

On the 27th July, one of the key challenges we’ll face is shooting the moon large in the frame so we can see every crater on the asteroid pockmarked surface. It’s a task normally reserved for astronomers with super powerful telescopes, but if you’ve got a long telephoto lens on a full frame DSLR with around 600 mm of focal length, it can be done, depending on the composition. I will be using the Canon EOS 5D Mark IV with an EF 200-400mm f/4L IS USM Ext. 1.4 x lens.

  1. Use a tripod to capture the intimate details

As you frame up your shot, one thing will become immediately apparent; lunar tracking is incredibly challenging as the moon moves through the sky surprisingly quickly. As you’ll be using a long lens for this shoot, it’s important to invest in a sturdy tripod to help capture the best possible image. Although it will be tempting to take the shot by hand, it’s important to remember that your subject is over 384,000km away from you and even with a high shutter speed, the slightest of movements will become exaggerated.

  1. Integrate the moon into your landscape

Whilst images of the moon large in the frame can be beautifully detailed, they are essentially astronomical in their appeal. Personally, I’m far more drawn to using the lunar allure as an element in my landscapes, or using the moonlight as a light source. The latter is difficult, as the amount of light the moon reflects is tiny, whilst the lunar surface is so bright by comparison. Up to now, night photography meant long, long exposures but with cameras such as the Canon EOS-1D X Mark II and the Canon EOS 5D Mark IV now capable of astonishing low light performance, a whole new nocturnal world of opportunities has been opened to photographers.

  1. Master the shutter speed for your subject 

The most evocative and genuine use of the moon in landscape portraits results from situations when the light on the moon balances with the twilight in the surrounding sky. Such images have a subtle appeal, mood and believability.  By definition, any scene incorporating a medium or wide-angle view is going to render the moon as a tiny pin prick of light, but its presence will still be felt. Our eyes naturally gravitate to it, however insignificant it may seem. Of course, the issue of shutter speed is always there; too slow an exposure and all we’ll see is an unsightly lunar streak, even with a wide-angle lens.

 

On a clear night, mastering the shutter speed of your camera is integral to capturing the moon – exposing at 1/250 sec @ f8 ISO 100 (depending on focal length) is what you’ll need to stop the motion from blurring and if you are to get the technique right, with the high quality of cameras such as the Canon EOS 5DS R, you might even be able to see the twelve cameras that were left up there by NASA in the 60’s!

Continue Reading

Featured

How Africa can embrace AI

Currently, no African country is among the top 10 countries expected to benefit most from AI and automation. But, the continent has the potential to catch up with the rest of world if we act fast, says ZOAIB HOOSEN, Microsoft Managing Director.

Published

on

To play catch up, we must take advantage of our best and most powerful resource – our human capital. According to a report by the World Economic Forum (WEF), more than 60 percent of the population in sub-Saharan Africa is under the age of 25.

These are the people who are poised to create a future where humans and AI can work together for the good of society. In fact, the most recent WEF Global Shapers survey found that almost 80 percent of youth believe technology like AI is creating jobs rather than destroying them.

Staying ahead of the trends to stay employed

AI developments are expected to impact existing jobs, as AI can replicate certain activities at greater speed and scale. In some areas, AI could learn faster than humans, if not yet as deeply.

According to Gartner, while AI will improve the productivity of many jobs and create millions more new positions, it could impact many others. The simpler and less creative the job, the earlier, a bot for example, could replace it.

It’s important to stay ahead of the trends and find opportunities to expand our knowledge and skills while learning how to work more closely and symbiotically with technology.

Another global study by Accenture, found that the adoption of AI will create several new job categories requiring important and yet surprising skills. These include trainers, who are tasked with teaching AI systems how to perform; explainers, who bridge the gap between technologist and business leader; and sustainers, who ensure that AI systems are operating as designed.

It’s clear that successfully integrating human intelligence with AI, so they co-exist in a two-way learning relationship, will become more critical than ever.

Combining STEM with the arts

Young people have a leg up on those already in the working world because they can easily develop the necessary skills for these new roles. It’s therefore essential that our education system constantly evolves to equip youth with the right skills and way of thinking to be successful in jobs that may not even exist yet.

As the division of tasks between man and machine changes, we must re-evaluate the type of knowledge and skills imparted to future generations.

For example, technical skills will be required to design and implement AI systems, but interpersonal skills, creativity and emotional intelligence will also become crucial in giving humans an advantage over machines.

“At one level, AI will require that even more people specialise in digital skills and data science. But skilling-up for an AI-powered world involves more than science, technology, engineering and math. As computers behave more like humans, the social sciences and humanities will become even more important. Languages, art, history, economics, ethics, philosophy, psychology and human development courses can teach critical, philosophical and ethics-based skills that will be instrumental in the development and management of AI solutions.” This is according to Microsoft president, Brad Smith, and EVP of AI and research, Harry Shum, who recently authored the book “The Future Computed”, which primarily deals with AI and its role in society.

Interestingly, institutions like Stanford University are already implementing this forward-thinking approach. The university offers a programme called CS+X, which integrates its computer science degree with humanities degrees, resulting in a Bachelor of Arts and Science qualification.

Revisiting laws and regulation

For this type of evolution to happen, the onus is on policy makers to revisit current laws and even bring in new regulations. Policy makers need to identify the groups most at risk of losing their jobs and create strategies to reintegrate them into the economy.

Simultaneously, though AI could be hugely beneficial in areas such as curbing poor access to healthcare and improving diagnoses for example, physicians may avoid using this technology for fear of malpractice. To avoid this, we need regulation that closes the gap between the pace of technological change and that of regulatory response. It will also become essential to develop a code of ethics for this new ecosystem.

Preparing for the future

With the recent convergence of a transformative set of technologies, economies are entering a period in which AI has the potential overcome physical limitations and open up new sources of value and growth.

To avoid missing out on this opportunity, policy makers and business leaders must prepare for, and work toward, a future with AI. We must do so not with the idea that AI is simply another productivity enhancer. Rather, we must see AI as the tool that can transform our thinking about how growth is created.

It comes down to a choice of our people and economies being part of the technological disruption, or being left behind.

Continue Reading

Trending

Copyright © 2018 World Wide Worx