Connect with us

Cars

AR cuts design time at Ford

Published

on

Ford is expanding testing of Microsoft HoloLens mixed reality technology globally to gain speed in designing more stylish vehicles for its customers.

Ford designers have been swapping some clay-sculpting steels and rakes for mixed reality headsets and visualization software that can change vehicle design elements – side mirrors, grilles, vehicle interiors and more – in mere seconds.

Designers have been piloting Microsoft HoloLens technology for a year now in Ford’s Dearborn studios in the US, allowing them to see proposed virtual design elements as if these pieces were part of physical vehicles. They’ve been able to explore different shapes, sizes and textures of future vehicle attributes in minutes and hours instead of the weeks and months it can take to create clay models. And now, Ford is expanding this pioneering testing across the globe.

“It’s amazing we can combine the old and the new – clay models and holograms – in a way that both saves time and allows designers to experiment and iterate quickly to dream up even more stylish, clever vehicles,” says Jim Holland, Ford vice president, vehicle component and systems engineering. “Microsoft HoloLens is a powerful tool for designers as we continue to reimagine vehicles and mobility experiences in fast-changing times.”

HoloLens technology uses mixed reality, which enables designers to see holograms in photo-quality backdrops through wire-free headsets. They can scroll and preview at the flick of a finger through numerous design variations projected virtually onto an actual car or clay model.

“We may not be able to teleport yet, but HoloLens allows us to review full-size 3D designs with designers and engineers around the world in real time,” says Craig Wetzel, Ford manager, design technical operations. “And we’ve only just scratched the surface, so possibilities for the future seem almost limitless. This is very exciting.”

Seeing the future

As designers wearing headsets move around an actual vehicle, the Microsoft HoloLens scans and maps the environment far more accurately than GPS to render holograms and images from the angle at which the vehicle is being viewed. A Windows 10 computer embedded in the headsets brings the power of the operating system to a holographic device that is untethered, wearable and mobile. Traditionally, designers and engineers have to wear headsets that rely on cables tethered to a PC.

Designers see 3D holographic images of themes and features as though these elements were already part of the vehicle – allowing them to quickly evaluate the design, make changes, and determine styling options earlier in development.

“With HoloLens, we can instantly flip through virtual representations to decide which direction they should go,” says Michael Smith, Ford design manager. “As a designer, you want to show, not just tell. This is much more compelling.”

Ford has adapted HoloLens technology to enable designers to collaborate with engineers to better understand the customer experience, too. For example, the technology allows a designer and engineer to evaluate in near-real time how a new side mirror looks aesthetically, as well as the customer’s view of the vehicle’s surroundings.

Whereas today it can take days, even weeks, to study a grille design, HoloLens allows designers and engineers to explore a variety of different iterations in a matter of hours. The headsets can even be synced to allow multiple team members to view a design simultaneously, making collaboration easy. They can also record audio notes – high-tech “sticky notes” – for team members working in other time zones or off-site.

Beyond the global design test, Ford is investigating how to bring HoloLens technology into more engineering development processes to further bolster the company’s lead in using advanced visualization technologies such as virtual reality.

“HoloLens allows a whole team of people to collaborate, share and experience ideas together,” says Elizabeth Baron, Ford virtual reality and advanced visualization technical specialist. “Mixing virtual and physical models is exciting, because it helps our designers and engineers communicate effectively and ideate to see what the future looks like earlier in the process. This allows great freedom and efficiency in how prototypes are created or changed.”

Cars

Body-tracking tech moves to assembly line

Technology typically used by the world’s top sport stars to raise their game, or ensure their signature skills are accurately replicated in leading video games, is now being used on an auto assembly line.

Published

on

Employees at Ford’s Valencia Engine Assembly Plant, in Spain, are using a special suit equipped with advanced body tracking technology. The pilot system, created by Ford and the Instituto Biomecánica de Valencia, has involved 70 employees in 21 work areas. 

Player motion technology usually records how athletes sprint or turn, enabling sport coaches or game developers to unlock the potential of sport stars in the real world or on screen. Ford is using it to design less physically stressful workstations for enhanced manufacturing quality.

“It’s been proven on the sports field that with motion tracking technology, tiny adjustments to the way you move can have a huge benefit,” said Javier Gisbert, production area manager, Ford Valencia Engine Assembly Plant. “For our employees, changes made to work areas using similar technology can ultimately ensure that, even on a long day, they are able to work comfortably.”

Engineers took inspiration from a suit they saw at a trade fair that demonstrated how robots could replicate human movement and then applied it to their workplace, where production of the  new Ford Transit Connect and 2.0-litre EcoBoost Duratec engines began this month.

The skin-tight suit consists of 15 tiny movement tracking light sensors connected to a wireless detection unit. The system tracks how the person moves at work, highlighting head, neck, shoulder and limb movements. Movement is recorded by four specialised motion-tracking cameras – similar to those usually paired with computer game consoles – placed near the worker and captured as a 3D skeletal character animation of the user.

Specially trained ergonomists then use the data to help employees align their posture correctly. Measurements captured by the system, such as an employee’s height or arm length, are used to design workstations, so they better fit employees. 

Continue Reading

Cars

Electric cars begin to bridge the luxury gap

A new era has dawned as electric mobility bridges the gap between luxury and necessity, writes TREVOR HILL – head of Audi South Africa.

Published

on

Mobility is essential to today’s world. We travel to get to work, to go shopping, and to meet friends and family – in short, effective transport impacts on all aspects of our modern lives. Access to mobility is critical to economic growth and progress, bringing more opportunities and better productivity. At the same time however, growing environmental concerns and a looming shortage of fossil fuels have created tension between our ever-growing demand for mobility and the health of our planet.

Growing populations, increasing urbanization and economic and social development mean that there are more cars on our roads each day. The knock-on effects of this are greater levels of congestion and longer times spent commuting, which means more stress and higher levels of aggression on the road. Skyrocketing levels of air pollution – to which transportation is one of the leading contributors – has negative effects on both health and climate change, both of which are key issues in global policy agendas.

So, the writing has been on the wall for some time. The gold standard in automotive technological progress has thus been to achieve a radical reduction of engine emissions and the development of electric cars has been at the forefront of this charge. We have now entered the beginning of a new era, as more and more of these vehicles take to the roads. Electric cars are now at the cusp of the mass market, with a steady stream of new models set to reach the consumer in future. Last week, we launched the Audi e-tron, our first all-electric-drive SUV, at a world premiere in San Francisco – one huge leap forward in pursuit of our goal. Audi will also bring more than 20 electrified models to the market by 2025, from the compact class to the full-size category. Around a dozen models will be all-electric, while the remainder will be plug-in hybrids for emission-free driving on shorter journeys.

Powering this development is ongoing improvement in battery technology, with increasing energy density and lengthened driving ranges possible between charges. Consumers have noted that they feel confident using electric cars for day-to-day use once battery technology can sustain a driving range of 300 or more kilometres, which is now possible. The Audi e-tron has a range of 400 kilometers, making it ideal for long distance driving. Drivers who charge the e-tron overnight can set off in the morning in full confidence that they won’t need to stop at a charging station as they go about their day.

What this technological progress also means however, is that the levels of power and performance achieved by an electric car draw ever closer to those of traditional engines. For anyone who loves high strung, powerful engines and the rush of adrenaline that comes from flooring the throttle on an empty stretch of road, this is no small thing.  At Audi, we are lucky to be surrounded by some of the most exceptional engines ever produced, so few people understand the thrill of an extraordinary driving experience better than we do. So, the holy grail is to achieve this same performance with vastly improved economy.

The Audi e-tron’s electric drive has two asynchronous motors, one at the front, one at the rear, with a total output of 300 kW of power. This allows the Audi e-tron to accelerate from 0 to 100km/h in just 5.7 seconds.

The next step will be the development of electric cars suitable for those who regularly drive long distances, entailing further advances in battery technology, and the development of a network of charging stations across the country. The battery for the Audi e-tron is designed to last the entire life cycle of the vehicle. When charged at a high-power charging station at up to 150 kW, the Audi e-tron can be restored to 80% in less than half an hour. At 22 kW, the Audi e-tron can charge its battery to 100% in around four and a half hours.

For city dwellers, however, the age of electric mobility has well and truly arrived. Rapid advances in technology continue to drive progress; the rise of electric cars is only one of many developments set to transform transportation as we know it, heralding a cleaner, more efficient future.

 

Continue Reading

Trending

Copyright © 2018 World Wide Worx