Connect with us

Cars

AI will drive automotive future, says Audi SA head

Published

on

After the steam engine, assembly line production and automation in production, digitisation is having the biggest impact on the automotive industry, writes TREVOR HILL, Head of Audi South Africa.

As the “fourth industrial revolution” championed by the World Economic Forum’s Klaus Schwab gains momentum, it’s thrilling to anticipate what this means for the automotive industry – and as a result, cities of the future.

Schwab and the WEF link the emergence of breakthrough technologies such as artificial intelligence to a revolution in how business and society function together into the future. It makes sense. But, what this vision needs most, is for industries like ours to take the lead in translating theory into a tangible reality.

As with everything today, this happens within a context of constant change. The automotive industry is itself experiencing its own “fourth revolution”, and Audi is responding by transforming itself into an automotive brand that owns the future. Our focus is on driving progress as an innovator intentionally crossing the divide between a traditional model as motor vehicle manufacturer to being a hybrid business, where our vehicles enable superior mobility for goods and people in a more modern city.

Critical to this, is how we seamlessly integrate artificial intelligence across our product range. We know that the application of artificial intelligence opens up a new dimension of performance for vehicle products and that AI has an exponential impact on what we call the “mobility value chain”.

This means embracing the fact that future growth will no longer occur in the traditional car business, but instead it will shift to the usage of mobility products and services. Areas such as autonomous driving, new and sustainable drive concepts, mobility services and digitalisation of the car and vehicle environment are all examples of where our industry should be moving.

As a digital car company, Audi is digitising all processes: from product development with virtual reality, to the factory with intelligent robots and to sales with the latest digital technology. To enable this, we have expanded our business model to ensure that services appear alongside our products.

This by no means eliminates the need for automotive production and technology, but instead makes a giant leap forward in how traditional technologies play a greater part in society through the inclusion of AI.  With this in mind, we are focusing our business on developing alternative powertrains, integrated mobility solutions, autonomous driving technologies and a significantly greater level of connectivity that will help us better evolve the entire mobility value chain as soon as 2020.

Much of our focus is centered on the concept of the 25th hour. The 25th hour is built on the premise that in the future, self-driving cars will navigate fluently through the city – without a steering wheel, without a driver. Users will have free time. Free time that we at Audi call the “25th Hour” of the day.

Already, models such as the new A4 and new Q7 point the way ahead. Their online services, grouped together under the term Audi Connect, link them to the Internet, the infrastructure and to other vehicles. Their assistance systems operate predictively. For instance, they can alert the driver to a tight bend that comes just after the crest of a hill, or Traffic Jam Assist can take charge of the steering in slow-moving traffic on good roads, at a speed of up to 60 km/h. These technologies represent a pre-stage to piloted driving, which will be introduced in series production in 2017 with the next A8 generation.

Outside of what is included in the latest generation of luxury sedans, we are entering a time of swarm intelligence, where cars communicate with each other and with infrastructure, then use this information to plan optimum routes and speeds. A technology called Traffic Light Information (TLI) is already in place in Las Vegas, where it communicates with traffic lights and provides drivers with a “time to green light” countdown on the head-up vehicle display, telling them when the light is due to change.

Cars communicating with the infrastructure around them can also cut fuel consumption in urban traffic by up to 15 percent, as cars “surf the green wave”, adjusting their speed to ensure each traffic light turns green as they reach it.

The latest generation of mild-hybrid vehicles feature electrical systems that can coast with the engine switched off and the drivetrain decoupled, an extended start-stop mode and a high level of brake-energy recuperation. This is another step toward affordable, practical, fully electric vehicles

The buzzwords in automotive design these days are autonomy, intelligence and innovation. The vehicles of the future will continually learn and develop, while the technology adapts to people’s individual needs. Cars’ AI, or artificial intelligence will also suggest appropriate services and book them if desired by its passengers, like a concierge.

The latest software can also be downloaded as required, so you will be able to update your car in the same way you update your phone or your computer. From now on, your car can order functions on demand and always have the most up-to-the-minute capabilities – downloaded straight from the internet, as you need them.

The car of the future will be a car uniquely customised to client needs. It will be constantly learning, updating its knowledge and fine-tuning the user experience to suit the driver’s preferences. Your car can create working conditions that are even more pleasant and productive than in the office.

Piloted parking is another revolutionary innovation already available in the cars of today, such as the new Audi A8. You no longer even need to be seated in your vehicle while you park – your car does it all for you, more accurately and requiring less parking space.

This has further implications for urban design, as the space required for parking areas can be reduced. Indeed, the very idea of mobility is changing. Even the principle that you need to own a single personal vehicle to be mobile is being questioned.

Car companies are offering mobility solutions that allow you to pick up a car when required, or to change the model of car you drive several times during a year. Thanks to advancements in automation, innovation and artificial intelligence, motoring and mobility is about to change permanently. How we get around has always been part of what defines us humans, and we are about to take a quantum leap into an exciting new phase of our existence.

It’s quite a time to be alive.

Cars

Body-tracking tech moves to assembly line

Technology typically used by the world’s top sport stars to raise their game, or ensure their signature skills are accurately replicated in leading video games, is now being used on an auto assembly line.

Published

on

Employees at Ford’s Valencia Engine Assembly Plant, in Spain, are using a special suit equipped with advanced body tracking technology. The pilot system, created by Ford and the Instituto Biomecánica de Valencia, has involved 70 employees in 21 work areas. 

Player motion technology usually records how athletes sprint or turn, enabling sport coaches or game developers to unlock the potential of sport stars in the real world or on screen. Ford is using it to design less physically stressful workstations for enhanced manufacturing quality.

“It’s been proven on the sports field that with motion tracking technology, tiny adjustments to the way you move can have a huge benefit,” said Javier Gisbert, production area manager, Ford Valencia Engine Assembly Plant. “For our employees, changes made to work areas using similar technology can ultimately ensure that, even on a long day, they are able to work comfortably.”

Engineers took inspiration from a suit they saw at a trade fair that demonstrated how robots could replicate human movement and then applied it to their workplace, where production of the  new Ford Transit Connect and 2.0-litre EcoBoost Duratec engines began this month.

The skin-tight suit consists of 15 tiny movement tracking light sensors connected to a wireless detection unit. The system tracks how the person moves at work, highlighting head, neck, shoulder and limb movements. Movement is recorded by four specialised motion-tracking cameras – similar to those usually paired with computer game consoles – placed near the worker and captured as a 3D skeletal character animation of the user.

Specially trained ergonomists then use the data to help employees align their posture correctly. Measurements captured by the system, such as an employee’s height or arm length, are used to design workstations, so they better fit employees. 

Continue Reading

Cars

Electric cars begin to bridge the luxury gap

A new era has dawned as electric mobility bridges the gap between luxury and necessity, writes TREVOR HILL – head of Audi South Africa.

Published

on

Mobility is essential to today’s world. We travel to get to work, to go shopping, and to meet friends and family – in short, effective transport impacts on all aspects of our modern lives. Access to mobility is critical to economic growth and progress, bringing more opportunities and better productivity. At the same time however, growing environmental concerns and a looming shortage of fossil fuels have created tension between our ever-growing demand for mobility and the health of our planet.

Growing populations, increasing urbanization and economic and social development mean that there are more cars on our roads each day. The knock-on effects of this are greater levels of congestion and longer times spent commuting, which means more stress and higher levels of aggression on the road. Skyrocketing levels of air pollution – to which transportation is one of the leading contributors – has negative effects on both health and climate change, both of which are key issues in global policy agendas.

So, the writing has been on the wall for some time. The gold standard in automotive technological progress has thus been to achieve a radical reduction of engine emissions and the development of electric cars has been at the forefront of this charge. We have now entered the beginning of a new era, as more and more of these vehicles take to the roads. Electric cars are now at the cusp of the mass market, with a steady stream of new models set to reach the consumer in future. Last week, we launched the Audi e-tron, our first all-electric-drive SUV, at a world premiere in San Francisco – one huge leap forward in pursuit of our goal. Audi will also bring more than 20 electrified models to the market by 2025, from the compact class to the full-size category. Around a dozen models will be all-electric, while the remainder will be plug-in hybrids for emission-free driving on shorter journeys.

Powering this development is ongoing improvement in battery technology, with increasing energy density and lengthened driving ranges possible between charges. Consumers have noted that they feel confident using electric cars for day-to-day use once battery technology can sustain a driving range of 300 or more kilometres, which is now possible. The Audi e-tron has a range of 400 kilometers, making it ideal for long distance driving. Drivers who charge the e-tron overnight can set off in the morning in full confidence that they won’t need to stop at a charging station as they go about their day.

What this technological progress also means however, is that the levels of power and performance achieved by an electric car draw ever closer to those of traditional engines. For anyone who loves high strung, powerful engines and the rush of adrenaline that comes from flooring the throttle on an empty stretch of road, this is no small thing.  At Audi, we are lucky to be surrounded by some of the most exceptional engines ever produced, so few people understand the thrill of an extraordinary driving experience better than we do. So, the holy grail is to achieve this same performance with vastly improved economy.

The Audi e-tron’s electric drive has two asynchronous motors, one at the front, one at the rear, with a total output of 300 kW of power. This allows the Audi e-tron to accelerate from 0 to 100km/h in just 5.7 seconds.

The next step will be the development of electric cars suitable for those who regularly drive long distances, entailing further advances in battery technology, and the development of a network of charging stations across the country. The battery for the Audi e-tron is designed to last the entire life cycle of the vehicle. When charged at a high-power charging station at up to 150 kW, the Audi e-tron can be restored to 80% in less than half an hour. At 22 kW, the Audi e-tron can charge its battery to 100% in around four and a half hours.

For city dwellers, however, the age of electric mobility has well and truly arrived. Rapid advances in technology continue to drive progress; the rise of electric cars is only one of many developments set to transform transportation as we know it, heralding a cleaner, more efficient future.

 

Continue Reading

Trending

Copyright © 2018 World Wide Worx