Connect with us

Featured

Ford puts $4.5bn into e-vehicles

Published

on

Ford is investing an additional $4.5 billion in electrified vehicle solutions by 2020 and says it is changing how the company develops vehicle experiences for customers.

Ford is adding 13 new electrified vehicles to its portfolio by 2020, when more than 40 per cent of the company’s global nameplates will come in electrified versions. This represents Ford’s largest-ever electrified vehicle investment in a five-year period.

On the way next year is a new Focus Electric, which features all-new DC fast-charge capability delivering an 80 per cent charge in an estimated 30 minutes and a projected 160-kilometre (100-mile) range – an estimated two hours faster than today’s Focus Electric.

The new Focus Electric, which starts production late next year, also will provide European and North American customers:

  • SmartGauge with EcoGuide LCD Instrument Cluster, which offers a multitude of customisable displays that can help the driver see real-time electric vehicle power usage to help maximise vehicle efficiency
  • Brake Coach, another smart feature that coaches the driver on how to use smooth braking to maximise the energy captured through the Regenerative Braking System. The more energy a driver captures through braking, the moreenergy is returned to the vehicle’s battery
  • Fun-to-drive character, with agile steering and handling engineered into the vehicle to give drivers a more connected feel to the road

Ford’s shift to add electrified vehicle solutions answers increasing global trends calling for cleaner, more efficient vehicles.

Ford also is expanding its electrified vehicle research and development programme in Europe and Asia this year, creating a “hub and spoke” system that allows the global team to further accelerate battery technology and take advantage of market specific opportunities.

Experience-led design

Ford also is reimagining how to set itself apart in the marketplace by focusing on the customer experience and not just the vehicle itself. The company is changing its product development process to support the shift.

“The challenge going forward isn’t who provides the most technology in a vehicle but who best organises that technology in a way that most excites and delights people,” said Raj Nair, executive vice president, Product Development and chief technical officer, Ford Motor Company. “By observing consumers, we can better understand which features and strengths users truly use and value and create even better experiences for them going forward.”

In addition to traditional market research, Ford is investing in social science-based research globally, observing how consumers interact with vehicles and gaining new insights into the cognitive, social, cultural, technological and economic nuances that affect product design.

“This new way of working brings together marketing, research, engineering and design in a new way to create meaningful user experiences, rather than individually developing technologies and features that need to be integrated into a final product,” Nair said. “We are using new insights from anthropologists, sociologists, economists, journalists and designers, along with traditional business techniques, to reimagine our product development process, create new experiences and make life better for millions of people.”

Next year, Ford is doubling the number of projects that use ethnographic research versus this year.

The team of social scientists already has spent months exploring topics such as the future of luxury transport, how people form relationships with their cars and the role of trucks in the American heartland.

Another new twist to the product development process is that designers no longer just sketch products but also full customer experience illustrations that visualise the experience each product is meant to deliver. The series of vignettes define a unique user journey that seamlessly integrates both hardware and software experiences.

This user experience design technique also plays an important role in developing the Ford Smart Mobility plan, which is designed to take the company to the next level in connectivity, mobility, autonomous vehicles, the customer experience and data and analytics.

“As both an auto and a mobility company, we at Ford are going further than just designing the product to move people from point A to point B,” Nair said. “We are considering the way customers interact with our vehicles as a unified experience, looking for ways to excite and delight customers and make their lives better.”

Accelerated battery research and development

The global expansion of Ford’s electric vehicle research and development programme allows the company’s Electrified Powertrain Engineering teams to share common technologies and test batteries virtually, in real time, to develop new technology faster while reducing the need for costly prototypes.

Ford also is expanding in Europe and China to accelerate battery technology research and development for new markets. By using an innovative hardware and software systems called HIL, or Hardware in a Loop, the global team can test battery technology and control system hardware in a virtual environment to simulate how batteries and control modules would behave in different – often punishing – environments in any part of the world.

“Batteries are the life force of any electric vehicle, and we have been committed to growing our leadership in battery research and development for more than 15 years,” said Kevin Layden, director, Ford Electrification Programs.

Featured

When will we stop calling them phones?

If you don’t remember when phones were only used to talk to people, you may wonder why we still use this term for handsets, writes ARTHUR GOLDSTUCK, on the eve of the 10th birthday of the app.

Published

on

Do you remember when handsets were called phones because, well, we used them to phone people?

It took 120 years from the invention of the telephone to the use of phones to send text.

Between Alexander Graham Bell coining the term “telephone” in 1876 and Finland’s two main mobile operators allowing SMS messages between consumers in 1995, only science fiction writers and movie-makers imagined instant communication evolving much beyond voice. Even when BlackBerry shook the business world with email on a phone at the end of the last century, most consumers were adamant they would stick to voice.

It’s hard to imagine today that the smartphone as we know it has been with us for less than 10 years. Apple introduced the iPhone, the world’s first mass-market touchscreen phone, in June 2007, but it is arguable that it was the advent of the app store in July the following year that changed our relationship with phones forever.

That was the moment when the revolution in our hands truly began, when it became possible for a “phone” to carry any service that had previously existed on the World Wide Web.

Today, most activity carried out by most people on their mobile devices would probably follow the order of social media in first place – Facebook, Twitter, Instagram and LinkedIn all jostling for attention – and  instant messaging in close second, thanks to WhatsApp, Messenger, SnapChat and the like. Phone calls – using voice that is – probably don’t even take third place, but play fourth or fifth fiddle to mapping and navigation, driven by Google Maps and Waze, and transport, thanks to Uber, Taxify, and other support services in South Africa like MyCiti,  Admyt and Kaching.

Despite the high cost of data, free public Wi-Fi is also seeing an explosion in use of streaming video – whether Youtube, Netflix, Showmax, or GETblack – and streaming music, particularly with the arrival of Spotify to compete with Simfy Africa.

Who has time for phone calls?

The changing of the phone guard in South Africa was officially signaled last week with the announcement of Vodacom’s annual results. Voice revenue for the 2018 financial year ending 31 March had fallen by 4.6%, to make up 40.6% of Vodacom’s revenue. Total revenue had grown by 8.1%, which meant voice seriously underperformed the group, and had fallen by 4% as a share of revenue, from 2017’s 44.6%.

The reason? Data had not only outperformed the group, increasing revenue by 12.8%, but it had also risen from 39.7% to 42.8% of group revenue,

This means that data has not only outperformed voice for the first time – as had been predicted by World Wide Worx a year ago – but it has also become Vodacom’s biggest contributor to revenue.

That scenario is being played out across all mobile network operators. In the same way, instant messaging began destroying SMS revenues as far back as five years ago – to the extent that SMS barely gets a mention in annual reports.

Data overtaking voice revenues signals the demise of voice as the main service and key selling point of mobile network operators. It also points to mobile phones – let’s call them handsets – shifting their primary focus. Voice quality will remain important, but now more a subset of audio quality rather than of connectivity. Sound quality will become a major differentiator as these devices become primary platforms for movies and music.

Contact management, privacy and security will become critical features as the handset becomes the storage device for one’s entire personal life.

Integration with accessories like smartwatches and activity monitors, earphones and earbuds, virtual home assistants and virtual car assistants, will become central to the functionality of these devices. Why? Because the handsets will control everything else? Hardly.

More likely, these gadgets will become an extension of who we are, what we do and where we are. As a result, they must be context aware, and also context compatible. This means they must hand over appropriate functions to appropriate devices at the appropriate time. 

I need to communicate only using my earpiece? The handset must make it so. I have to use gesture control, and therefore some kind of sensor placed on my glasses, collar or wrist? The handset must instantly surrender its centrality.

There are numerous other scenarios and technology examples, many out of the pages of science fiction, that point to the changing role of the “phone”. The one thing that’s obvious is that it will be silly to call it a phone for much longer.

  • Arthur Goldstuck is founder of World Wide Worx and editor-in-chief of Gadget.co.za. Follow him on Twitter on @art2gee and on YouTube
Continue Reading

Featured

MTN 5G test gets 520Mbps

MTN and Huawei have launched Africa’s first 5G field trial with an end-to-end Huawei 5G solution.

Published

on

The field trial demonstrated a 5G Fixed-Wireless Access (FWA) use case with Huawei’s 5G 28GHz mmWave Customer Premises Equipment (CPE) in a real-world environment in Hatfield Pretoria, South Africa. Speeds of 520Mbps downlink and 77Mbps uplink were attained throughout respectively.

“These 5G trials provide us with an opportunity to future proof our network and prepare it for the evolution of these new generation networks. We have gleaned invaluable insights about the modifications that we need to do on our core, radio and transmission network from these pilots. It is important to note that the transition to 5G is not just a flick of a switch, but it’s a roadmap that requires technical modifications and network architecture changes to ensure that we meet the standards that this technology requires. We are pleased that we are laying the groundwork that will lead to the full realisation of the boundless opportunities that are inherent in the digital world.” says Babak Fouladi, Group Chief Technology & Information Systems Officer, at MTN Group.

Giovanni Chiarelli, Chief Technology and Information Officer for MTN SA said: “Next generation services such as virtual and augmented reality, ultra-high definition video streaming, and cloud gaming require massive capacity and higher user data rates. The use of millimeter-wave spectrum bands is one of the key 5G enabling technologies to deliver the required capacity and massive data rates required for 5G’s Enhanced Mobile Broadband use cases. MTN and Huawei’s joint field trial of the first 5G mmWave Fixed-Wireless Access solution in Africa will also pave the way for a fixed-wireless access solution that is capable of replacing conventional fixed access technologies, such as fibre.”

“Huawei is continuing to invest heavily in innovative 5G technologies”, said Edward Deng, President of Wireless Network Product Line of Huawei. “5G mmWave technology can achieve unprecedented fiber-like speed for mobile broadband access. This trial has shown the capabilities of 5G technology to deliver exceptional user experience for Enhanced Mobile Broadband applications. With customer-centric innovation in mind, Huawei will continue to partner with MTN to deliver best-in-class advanced wireless solutions.”

“We are excited about the potential the technology will bring as well as the potential advancements we will see in the fields of medicine, entertainment and education. MTN has been investing heavily to further improve our network, with the recent “Best in Test” and MyBroadband best network recognition affirming this. With our focus on providing the South Africans with the best customer experience, speedy allocation of spectrum can help bring more of these technologies to our customers,” says Giovanni.

Continue Reading

Trending

Copyright © 2018 World Wide Worx