Connect with us

Cars

Why SA needs connected taxis

Traffic across South Africa continues to be a headache and digital acceleration may just be the answer in mitigating daily congestion, says CLAYTON NAIDOO, General Manager, Sub-Saharan Africa, Cisco.

Published

on

Creating smart cities and digital workplaces means connecting infrastructure and digitizing transport systems, particularly in the taxi industry. Can you imagine what South Africa roads would looks like in 10-years-time, if taxis were connected?

According to Statistics SA’s 2013 Household Survey, taxi operators transport over 15 million commuters daily.  Around 200,000 minibus taxis, across 2 600 taxi ranks, provide the main mode of transport for 50% of SA’s population earning less than R3 000 per month. 

The impact of the taxi industry on the daily lives of South Africans is huge, research by Transaction Capital, a financial services provider in the taxi industry revealed.   An estimated 70% of people who attend educational institutions make use of taxis, 69% of all South African households use taxis in their transport mix, and a staggering 68% of all public transport trips to work are in taxis. Plus, minibus taxis reach remote places other forms of public transport don’t – the average South African lives within a 5-minute walk of a minibus taxi. 

Sadly, the industry is still faced with challenges when it comes to road congestion, accidents and safety, and with drivers often forced by financial needs to work long hours. But a future where taxis can operate efficiently and profitably, while improving safety and providing a more convenient customer and employee experience, is possible. But it requires a digital business transformation. 

Our cities need to start connecting infrastructure and piloting these digital experiences now. Globally, there will be 380 million connected vehicles on the roads by 2020, but that is only half the battle. The first step toward making the frictionless commute a reality is for local governments to begin investing in technology architectures and physical infrastructure to accelerate connected transportation systems and create workplace innovation. 

On the strategic side, transportation officials can begin by identifying best practice. It is best to first pinpoint a problem that is unique to a city or region. For example, a city with notorious traffic congestion might want to start integrating smart sensors on roadways to alert drivers and connected vehicles in real-time of potential hazards, and possibly prevent accidents before they happen.

How would that look in practice? Let’s take the example of Sipho Ngwenya, a fictional character, from Zola in Soweto, one of the 600 000 people employed in the industry. 

He gets up at 4am everyday to get to the taxi rank where he parks his mini bus overnight. Sipho hopes to be one of the first drivers there to ensure he fills his taxi with commuters, who travel to the northern suburbs of Johannesburg for work and school. 

The earlier he starts transporting people, the better chance he has of generating the daily “rental fee” he pays his boss – the owner of the minibus. If Sipho is even 10 minutes late, the queue of people at the rank may have halved. If his taxi is the last one in the queue, it may not fill up, and he may need to drive around the block to find more commuters. The delay means longer hours for him, his conductor-cum-assistant (guardjie) will have to spend more time calculating and collecting fares, and it will increase his costs – he’ll spend more money on fuel.

Fast forward six-months later, when the Joburg metro area would have implemented the Cisco Connected Mass Transit technology solution to connect the taxi industry. Sipho’s alarm goes off at 4am. He grabs his phone and logs onto the Cisco platform before he jumps out of bed: the weather is clear but there’s been an accident overnight on his route to the rank – he’ll have to take a detour. He checks once again just as he leaves home, and sees that he has time to grab breakfast on his way. 

He is the first driver to arrive at the rank that morning – stress-free and ready to start. The rest of the minibuses are stuck behind the accident. He loads commuters and manages to get all of them to their destinations 10 minutes early, by checking the best routes.  Payments are no longer collected in person – there is now an easy mobile payment option that customers love, especially the young ones. And Sipho no longer needs to search for commuters – they stop his minibus on the road because it is marked as a ‘connected minibus’. This is a smart workplace.

These digital solutions are real and available to the SA taxi world. There are some caveats, though: Cisco’s international experience shows that these solutions are best implemented alongside awareness campaigns for commuters and government incentives to drive adoption, as well as ensuring the regulatory environment is conducive. Luckily, technology itself isn’t too much of a problem: the solutions work with existing IT systems local governments have installed.

Imagine South Africa in a decade. Now imagine a South Africa where traffic congestion is a thing of the past. 

Cars

Cars connect to traffic lights

New Jaguar Land Rover technology using Vehicle-to-Infrastructure (V2X) connects cars to traffic lights so drivers can avoid getting stuck at red and help free up traffic flow in cities.

Published

on

The world’s first traffic lights were installed exactly 150 years ago outside the Houses of Parliament in London. Since then drivers around the globe have spent billions of hours waiting for green. With Jaguar Land Rover’s latest tech, however, their days could be numbered.

The Green Light Optimal Speed Advisory (GLOSA) system allows cars to “talk” to traffic lights and inform the driver the speed they should drive as they approach junctions or signals.

Widespread adoption of the V2X technology will prevent drivers from racing to beat the lights and improve air quality by reducing harsh acceleration or braking near lights. The goal is for the V2X revolution to create free-flowing cities with fewer delays and less commuter stress.

The connected technology is currently being trialed on a Jaguar F-PACE, as part of a £20 million (R371 million) collaborative research project.

Like all Jaguar or Land Rover vehicles today, the F-PACE already boasts a wide range of sophisticated Advanced Driver Assistance (ADAS) features. The connected technology trials are enhancing existing ADAS features by increasing the line of sight of a vehicle when it is connected via the internet to other vehicles and infrastructure. GLOSA is being tested alongside a host of other measures to slash the time commuters spend in traffic.

For example, Intersection Collision Warning (ICW) alerts drivers when it is unsafe to proceed at a junction. ICW informs drivers if other cars are approaching from another road and can suggest the order in which cars should proceed at a junction.

Jaguar Land Rover has also addressed time lost to searching for a parking space by providing real-time information of available spaces to drivers and developed an Emergency Vehicle Warning to alert motorists when a fire engine, police car or ambulance is approaching. The advanced technology builds on the connected systems already available on the Jaguar F-PACE such as Adaptive Cruise Control.

Oriol Quintana-Morales, Jaguar Land Rover Connected Technology Research Engineer, said: “This cutting-edge technology will radically reduce the time we waste at traffic lights. It has the potential to revolutionise driving by creating safe, free-flowing cities that take the stress out of commuting. Our research is motivated by the chance to make future journeys as comfortable and stress-free as possible for all our customers.”

The trials are part of the £20 million government-funded project, UK Autodrive, which has helped accelerate the development of Jaguar Land Rover’s future self-driving and connected technology. As well as strengthening the Midlands’ position as a hub of mobility innovation. Britain’s biggest car maker, headquartered in Coventry, is working on connected technology as part of its pledge to deliver zero accidents, zero congestion and zero emissions.

Connected technology will link the vehicle to everything around it, allowing seamless, free-flowing traffic that will pave the way for delivering self-driving vehicles.

Continue Reading

Cars

Roborace reveals new vehicle

Roborace has given its fans a first look at what the new competition vehicle for Season Alpha will look like at the WebSummmit conference in Lisbon, Portugal.

Published

on

DevBot 2.0 utilizes sensors similar to that in Robocar and is also fully electric, but has the addition of a cockpit for a human driver.

Season Alpha will see teams comprising of both a human driver and an AI driver. Lap times from the duo will be compared with that of other human + machine teams to determine a winner.

DevBot 2.0 will be launched in the new year but Roborace CEO Lucas Di Grassi has shared some first glimpses of what 2019 holds for the series in an interview on stage at WebSummit.

Season Alpha will see teams compete starting in Spring 2019 using the DevBot 2.0 vehicles to develop their automated driving systems, with professional drivers teaching the AI how to improve, as well as learning from the AI how to better their own performance.

Continue Reading

Trending

Copyright © 2018 World Wide Worx