Connect with us

Cars

Renault, Nissan, Microsoft, co-drivers for car future

Published

on

Renault and Nissan along with Microsoft have signed a global, multiyear agreement to partner on next-generation technologies to advance connected driving experiences worldwide.

The companies will work together to develop next-generation connected services for cars powered by Microsoft Azure, one of the company’s intelligent cloud offerings. These new services will improve customer experience via advanced navigation, predictive maintenance and vehicle centric services, remote monitoring of car features, external mobile experiences and over-the-air updates.

“A car is becoming increasingly connected, intelligent and personal,” said Ogi Redzic, Renault-Nissan Alliance senior vice-president, Connected Vehicles and Mobility Services. “Partnering with Microsoft allows us to accelerate the development of the associated key technologies needed to enable scenarios our customers want and build all-new ones they haven’t even imagined. We aim to become the provider of connected mobility for everyone with one single global platform.”

The Renault-Nissan Alliance is pioneering autonomous driving and connectivity features on mainstream, mass-market vehicles at affordable prices. The Alliance aims to develop connectivity technologies and features to support the launch of more than 10 vehicles with autonomous driving technology by 2020 with services to maximize better use of newly found in-car free time.

Renault-Nissan will continuously develop and launch new connected services and applications that make it easier for people to stay connected to work, entertainment and social networks, and offer vehicle centric services that will simplify and enhance engagement with the car through usage-based information, remote access, remote diagnostics and preventive maintenance

Microsoft Azure provides a proven, secure global cloud platform with unlimited scale that allows Renault-Nissan to deliver services worldwide to its broad customer base.

Renault-Nissan selected Azure in part because of its enterprise-grade security and Microsoft’s rigorous commitment to compliance. In addition, Azure supports multiple operating systems, programming languages and tools, providing flexibility and choice to build a common platform for Renault-Nissan to deploy services to both Alliance brands.

“While the connected car experience is in its infancy, we believe there’s so much potential to dramatically change the industry. We are partnering to accelerate Renault-Nissan’s mobile and cloud strategies and unlock new experiences for their customers,” said Jean-Philippe Courtois, executive vice president and president, Microsoft Global Sales, Marketing and Operations, Microsoft. “Renault-Nissan is an exceptional partner thanks to its global presence and range of brands, which enable it to bring entirely new mobile and digital experiences to so many people. This collaboration will bring a new standard to connected cars.”

Focus on next-generation technologies

The partnership will accelerate development of best-in-class infotainment and location-based services that will:

Allow customers to personalize and protect their settings: Customers will be able to customize their settings knowing that data is safe and that they have the option to transfer the settings from one car to another, or lock them and disable transfer. By adding a driver-centric experience in the car, the drive becomes personal and allows for things like adaptive route suggestions and advanced navigation.

Productivity: With Microsoft, Renault-Nissan will expand the realm of productivity into the car – transforming the daily commute into a productive experience by seamlessly integrating the digital experiences present at work and life into the car.

Give access to over-the-air updates: Customers will be able to download over-the-air updates to, for example, have the latest autonomous drive software and collision-avoidance applications.

Help customers stay in touch: Customers will be able to easily check in and communicate their estimated time of arrival, or alert friends to a change of plans. They will also be able to use automatic payment from the car for highway tolls or parking, with a simple touch from the comfort of their seat.

Monitor the car from a distance: Car owners will be able to monitor their car from anywhere, through their mobile phone or laptop. They could transfer control to a friend or relative who needs their car – without transferring physical keys. They will use a mobile application that helps them find the car, can trigger remote charging and preconditioning and lock and unlock the car.

Protect the vehicle: Tracking software locates a stolen car and disables it at the next practical opportunity. “Geofencing” technology creates invisible fences around the car that will enable notifications when the car enters or exits a predefined area or route.

Improve the vehicle experience: By adding connectivity, customers will be able to have access to advance vehicle diagnostic services, allowing the car manufacturer to deliver unique features. Collecting real usage data will also support vehicle engineering to improve manufacturing quality.

Cars

Project Bloodhound saved

The British project to break the world landspeed record at a site in the Northern Cape has been saved by a new backer, after it went into bankruptcy proceedings in October.

Published

on

Two weeks ago,  and two months after entering voluntary administration, the Bloodhound Programme Limited announced it was shutting down. This week it announced that its assets, including the Bloodhound Supersonic Car (SSC), had been acquired by an enthusiastic – and wealthy – supporter.

“We are absolutely delighted that on Monday 17th December, the business and assets were bought, allowing the Project to continue,” the team said in a statement.

“The acquisition was made by Yorkshire-based entrepreneur Ian Warhurst. Ian is a mechanical engineer by training, with a strong background in managing a highly successful business in the automotive engineering sector, so he will bring a lot of expertise to the Project.”

Warhurst and his family, says the team, have been enthusiastic Bloodhound supporters for many years, and this inspired his new involvement with the Project.

“I am delighted to have been able to safeguard the business and assets preventing the project breakup,” he said. “I know how important it is to inspire young people about science, technology, engineering and maths, and I want to ensure Bloodhound can continue doing that into the future.

“It’s clear how much this unique British project means to people and I have been overwhelmed by the messages of thanks I have received in the last few days.”

The record attempt was due to be made late next year at Hakskeen Pan in the Kalahari Desert, where retired pilot Andy Green planned to beat the 1228km/h land-speed record he set in the United States in 1997. The target is for Bloodhound to become the first car to reach 1000mph (1610km/h). A track 19km long and 500 metres wide has been prepared, with members of the local community hired to clear 16 000 tons of rock and stone to smooth the surface.

The team said in its announcement this week: “Although it has been a frustrating few months for Bloodhound, we are thrilled that Ian has saved Bloodhound SSC from closure for the country and the many supporters around the world who have been inspired by the Project. We now have a lot of planning to do for 2019 and beyond.”

Continue Reading

Cars

Motor Racing meets Machine Learning

The futuristic car technology of tomorrow is being built today in both racing cars and
toys, writes ARTHUR GOLDSTUCK

Published

on

The car of tomorrow, most of us imagine, is being built by the great automobile manufacturers of the world. More and more, however, we are seeing information technology companies joining the race to power the autonomous vehicle future.

Last year, chip-maker Intel paid $15.3-billion to acquire Israeli company Mobileye, a leader in computer vision for autonomous driving technology. Google’s autonomous taxi division, Waymo, has been valued at $45-billion.

Now there’s a new name to add to the roster of technology giants driving the future.

DeepRacer on the inside

Amazon Web Services, the world’s biggest cloud computing service and a subsidiary of Amazon.com,  last month unveiled a scale model autonomous racing car for developers to build new artificial intelligence applications. Almost in the same breath, at its annual re:Invent conference in Las Vegas, it showcased the work being done with machine learning in Formula 1 racing.

AWS DeepRacer is a 1/18th scale fully autonomous race car, designed to incorporate the features and behaviour of a full-sized vehicle. It boasts all-wheel drive, monster truck tires, an HD video camera, and on-board computing power. In short, everything a kid would want of a self-driving toy car.

But then, it also adds everything a developer would need to make the car autonomous in ways that, for now, can only be imagined. It uses a new form of machine learning (ML), the technology that allows computer systems to improve their functions progressively as they receive feedback from their activities. ML is at the heart of artificial intelligence (AI), and will be core to autonomous, self-driving vehicles.

AWS has taken ML a step further, with an approach called reinforcement learning. This allows for quicker development of ML models and applications, and DeepRacer is designed to allow developers to experiment with and hone their skill in this area. It is built on top of another AWS platform, called Amazon SageMaker, which enables developers and data scientists to build, train, and deploy machine learning quickly and easily.

Along with DeepRacer, AWS also announced the DeepRacer League, the world’s first global autonomous racing league, open to anyone who orders the scale model from AWS.

DeepRacer on the outside

As if to prove that DeepRacer is not just a quirky entry into the world of motor racing, AWS also showcased the work it is doing with the Formula One Group. Ross Brawn, Formula 1’s managing director of Motor Sports, joined AWS CEO Andy Jassy during the keynote address at the re:Invent conference, to demonstrate how motor racing meets machine learning.

“More than a million data points a second are transmitted between car and team during a Formula 1 race,” he said. “From this data, we can make predictions about what we expect to happen in a wheel-to-wheel situation, overtaking advantage, and pit stop advantage. ML can help us apply a proper analysis of a situation, and also bring it to fans.

“Formula 1 is a complete team contest. If you look at a video of tyre-changing in a pit stop – it takes 1.6 seconds to change four wheels and tyres – blink and you will miss it. Imagine the training that goes into it? It’s also a contest of innovative minds.”

AWS CEO Andy Jassy unveils DeepRacer

Formula 1 racing has more than 500 million global fans and generated $1.8 billion in revenue in 2017. As a result, there are massive demands on performance, analysis and information. 

During a race, up to 120 sensors on each car generate up to 3GB of data and 1 500 data points – every second. It is impossible to analyse this data on the fly without an ML platform like Amazon SageMaker. It has a further advantage: the data scientists are able to incorporate 65 years of historical race data to compare performance, make predictions, and provide insights into the teams’ and drivers’ split-second decisions and strategies.

This means Formula 1 can pinpoint how a driver is performing and whether or not drivers have pushed themselves over the limit.

“By leveraging Amazon SageMaker and AWS’s machine-learning services, we are able to deliver these powerful insights and predictions to fans in real time,” said Pete Samara, director of innovation and digital technology at Formula 1.

  • Arthur Goldstuck is founder of World Wide Worx and editor-in-chief of Gadget.co.za. Follow him on Twitter on @art2gee and on YouTube

Continue Reading

Trending

Copyright © 2018 World Wide Worx