Connect with us

Featured

IBM opens Quantum Computing

Published

on

IBM Research has announced that for the first time ever it is making quantum computing available to members of the public, who can access and run experiments on IBM’s quantum processor.

IBM scientists have built a quantum processor that users can access through a first-of-a-kind quantum computing platform delivered via the IBM Cloud onto any desktop or mobile device. IBM believes quantum computing is the future of computing and has the potential to solve certain problems that are impossible to solve on today’s supercomputers.

The cloud-enabled quantum computing platform, called IBM Quantum Experience, will allow users to run algorithms and experiments on IBM’s quantum processor, work with the individual quantum bits (qubits), and explore tutorials and simulations around what might be possible with quantum computing.

The quantum processor is composed of five superconducting qubits and is housed at the IBM T.J. Watson Research Center in New York. The five-qubit processor represents the latest advancement in IBM’s quantum architecture that can scale to larger quantum systems. It is the leading approach towards building a universal quantum computer.

A universal quantum computer can be programmed to perform any computing task and will be exponentially faster than classical computers for a number of important applications for science and business.

A universal quantum computer does not exist today, but IBM envisions medium-sized quantum processors of 50-100 qubits to be possible in the next decade. With a quantum computer built of just 50 qubits, none of today’s TOP500 supercomputers could successfully emulate it, reflecting the tremendous potential of this technology. The community of quantum computer scientists and theorists is working to harness this power, and applications in optimization and chemistry will likely be the first to demonstrate quantum speed-up.

“Quantum computers are very different from today’s computers, not only in what they look like and are made of, but more importantly in what they can do. Quantum computing is becoming a reality and it will extend computation far beyond what is imaginable with today’s computers,” said Arvind Krishna, senior vice president and director, IBM Research. “This moment represents the birth of quantum cloud computing. By giving hands-on access to IBM’s experimental quantum systems, the IBM Quantum Experience will make it easier for researchers and the scientific community to accelerate innovations in the quantum field, and help discover new applications for this technology.”

With Moore’s Law running out of steam, quantum computing will be among the technologies that could usher in a new era of innovation across industries. This leap forward in computing could lead to the discovery of new pharmaceutical drugs and completely safeguard cloud computing systems. It could also unlock new facets of artificial intelligence (which could lead to future, more powerful Watson technologies), develop new materials science to transform industries, and search large volumes of big data.

IBM Quantum Experience

Quantum information is very fragile and needs to be protected from any errors that can result from heat and electromagnetic radiation. Signals are sent in and out of a cryogenic dilution refrigerator to measure operations on the quantum processor.

The IBM team has made a number of robust engineering advances both at the device level and in the electronic controls to give IBM Quantum Experience users unprecedented and reliably high-quality performance in this five-qubit processor.

Coupled with software expertise from the IBM Research ecosystem, the team has built a dynamic user interface on the IBM Cloud platform that allows users to easily connect to the quantum hardware via the cloud. The team sees the introduction to the public of this complete quantum computing framework as just the start of a new user community, which embraces the quantum world and how it works.

In the future, users will have the opportunity to contribute and review their results in the community hosted on the IBM Quantum Experience and IBM scientists will be directly engaged to offer more research and insights on new advances. IBM plans to add more qubits and different processor arrangements to the IBM Quantum Experience over time, so users can expand their experiments and help uncover new applications for the technology.

Quantum computing – a different way of thinking

We live in a world where classical physics defines our experiences and our intuition, and ultimately how we process information. However, nature at the atomic level is governed by a different set of rules known as quantum mechanics. It is beyond the reach of classical computers to solve problems that exist in nature in which quantum mechanics plays a role, for example, understanding how molecules behave.

To overcome this, in 1981, Richard Feynman proposed to build computers based on the laws of quantum mechanics. Over three decades later, IBM is helping to make this a reality.

Quantum computing works fundamentally differently from today’s computers. A classical computer makes use of bits to process information, where each bit represents either a one or a zero. In contrast, a qubit can represent a one, a zero, or both at once, which is known as superposition. This property along with other quantum effects enable quantum computers to perform certain calculations vastly faster than is possible with classical computers.

Most of today’s quantum computing research in academia and industry is focused on building a universal quantum computer. The major challenges include creating qubits of high quality and packaging them together in a scalable way, so they can perform complex calculations in a controllable way.

IBM employs superconducting qubits that are made with superconducting metals on a silicon chip and can be designed and manufactured using standard silicon fabrication techniques. Last year, IBM scientists demonstrated critical breakthroughs to detect quantum errors by combining superconducting qubits in latticed arrangements, and whose quantum circuit design is the only physical architecture that can scale to larger dimensions.

Now, IBM scientists have achieved a further advance by combining five qubits in the lattice architecture, which demonstrates a key operation known as a parity measurement – the basis of many quantum error correction protocols. The road towards universal quantum computing hinges upon the achievement of quantum error correction, and the IBM team has taken another important step down this challenging path.

New frontiers for quantum computing

There has been tremendous progress and interest in the field of quantum of computing in recent years. By giving users access to the IBM Quantum Experience, it will help businesses and organizations begin to understand the technology’s potential, for universities to grow their teaching programs in quantum computing and related subjects, and for students to become aware of promising new career paths.

“It is a beautiful challenge to pursue the path to build the first universal quantum computer, but it requires us to change how we think about the world. Access to early quantum computing prototypes will be key in imagining and developing future applications,” said Dario Gil, vice president of science and solutions, IBM Research. “If you want to understand what a true quantum computer will do for you and how it works, this is the place to do it. You won’t experience it anywhere else.”

IBM’s quantum computing platform is a core initiative within the newly formed IBM Research Frontiers Institute. The Frontiers Institute is a consortium that develops and shares ground-breaking computing technologies to spur world-changing innovations. Companies from diverse industries can leverage IBM’s research talent and cutting-edge infrastructure to explore what the future of quantum computing may mean for their organization and business. Founding members of the Frontiers Institute include Samsung, JSR, and Honda.

To access the IBM Quantum Experience and for more information on IBM’s quantum computing research, please visit www.ibm.com/quantumcomputing. To learn more about the IBM Research Frontiers Institute, please visit www.ibm.com/frontiers.

Note to journalists and bloggers: You can view and download b-roll on IBM’s quantum computing efforts at http://www.thenewsmarket.com/ibm. The video is available in HD, standard definition broadcast and streaming quality.

Featured

Low-cost wireless sport earphones get a kickstart

Wireless earphone brands are common, but not crowdfunded brands. BRYAN TURNER takes the K Sport Wireless for a run.

Published

on

As wireless technology becomes better, Bluetooth earphones have become popular in the consumer market. KuaiFit aspires to make them even more accessible to more people through a cheaper, quality product, by selling the K Sport Wireless Earphones directly from its Kickstarter page

KuaiFit has an app by the same name which offers voice-guided personal training services in almost every type of exercise, from cardio to weight-lifting. A vast range of connectivity to third-party sensors is available, like heart rate sensors and GPS devices, which work well with guided coaching. 

The app starts off with selecting a fitness level: beginner, intermediate and advanced. Thereafter, one has the ability to connect with real personal trainers via a subscription to its paid service. The subscription comes free for 6 months with the earphones, and R30 per month thereafter. 

The box includes a manual, a USB to two USB Type B connectors, different sized soft plastic eartips and the two earphone units. Each earphone is wireless and connects to the other independently of wires. This puts the K Sport Wireless in the realm of the Apple Earpods in terms of connection style. 

The earphones are just over 2cm wide and 2cm high. The set is black with a light blue KuaiFit logo on the earphone’s button. 

The button functions as an on/off switch when long-pressed and a play/pause button when quick-pressed. The dual-button set-up is convenient in everyday use, allowing for playback control depending on which hand is free. Two connectivity modes are available, single earphone mode or dual earphone mode. The dual earphone mode intelligently connects the second earphone and syncs stereo audio a few seconds after powering on. 

In terms of connectivity, the earphones are Bluetooth 4.1 with a massive 10-meter range, provided there are no obstacles between the device and the earphones. While it’s not Bluetooth 5, it still falls into the Bluetooth Low Energy connection category, meaning that the smartphone’s battery won’t be drastically affected by a consistent connection to the earphones. The batteries within the earphones aren’t specifically listed but last anywhere between 3 and 6 hours, depending on the mode. 

Audio quality is surprisingly good for earphones at this price point. The headset style is restricted to in-ear due to its small design and probable usage in movement-intensive activities. As a result, one has to be very careful how one puts these earphones, in because bass has the potential of getting reduced from an incorrect in-ear placement. In-ear earphones are usually notorious for ear discomfort and suction pain after extended usage. These earphones are one of the very few in this price range that are comfortable and don’t cause discomfort. The good quality of the soft plastic ear tip is definitely a factor in the high level of comfort of the in-ear earphone experience.

Overall, the K Sport Wireless earphones are great considering the sound quality and the low price: US$30 on Kickstarter.

Find them on Kickstarter here.

Continue Reading

Featured

Taxify enters Google Maps

A recent update to Taxify now uses Google Maps which allows users to identify their drivers, find public transport and search for billing options.

Published

on

People planning their travel routes using Google Maps will now see a Taxify icon in the app, in addition to the familiar car, public transport, walking and billing options.

Taxify started operating in South Africa in 2016 and as of October 2018 operates in seven South African cities – Johannesburg, Ekurhuleni, Tshwane, Cape Town, Durban, Port Elizabeth and Polokwane.

Once riders have searched for their destination and asked the app for directions, Google Maps shares the proximity of cars on the Taxify platform, as well as an estimated fare for the trip.

If users see that taking the Taxify option is their best bet, they can simply tap on the ‘Open app’ icon, to complete the process of booking the ride. Customers without the app on their device will be prompted to install Taxify first.

This integration makes it possible for users to evaluate which of the private, public or e-hailing modes of transport are most time-efficient and cost-effective.

“This integration with Google Maps makes it so much easier for users to choose the best way to move around their city,” says Gareth Taylor, Taxify’s country manager for South Africa. “They’ll have quick comparisons between estimated arrival times for the different modes of transport, as well as fares they can expect to pay, which will help save both time and money,” he added.

Taxify rides in Google Maps are rolling out globally today and will be available in more than 15 countries, with South Africa being one of the first countries to benefit from this convenient service.

Continue Reading

Trending

Copyright © 2018 World Wide Worx