Connect with us

Featured

Hands-on with the HoloLens

Published

on

At the Microsoft Build conference in San Francisco last week, the company finally allowed developers to get their hands on its new holographic viewing device, the HoloLens. ARTHUR GOLDSTUCK tried it out.

A ball of scrunched-up newspaper lies on a desk alongside colourful, triangular objects. I raise a finger in the air, and make a tapping motion on the ball. It rolls off the desk with a rustling noise. As it hits the ground, it suddenly explodes amid a cloud of smoke.

When the smoke clears, it reveals a gaping hole in the floor. Inside the hole, a cavernous green world appears. As I move around the edges of the hole, the view shifts to reveal layer upon layer of vague subterranean constructions. Red paper planes float about in the “sky” below like birds.

I speak a command: “Reset world”.

FEAT_Hololens

Instantly, the floor is back to its normal state of being, well, a floor. The ball of newspaper is back on the desk. I walk round the ball, examine it from each side, and from above and below. It is completely intact.

I pull the visor off my head, and the ball and desk disappear. I cautiously step on the carpet where the hole had appeared. Completely solid.

The scene that had just played itself out had been made possible by a new device called the Microsoft HoloLens. It is essentially a hologram viewer, but is also somewhat more. It is the first system that makes it possible to view holograms through a viewer that is not dependent on wires, connection to a computer or external cameras.

Unlike virtual reality viewers, like Samsung’s Gear VR, the HoloLens allows virtual images to be overlaid on the real world.  The concept is termed “mixed reality” and, unlike augmented reality, allows the user to interact with the image. It could, for example, be an application like a calendar hovering in mid-air, and allowing the user to click on an appointment to expand the entry.

Applications for the HoloLens are built on a new platform called Windows Holographic, which allows developers to import applications and scripts, integrating images and commands into the user experience. As long as a program has been created as a universal Windows application – a standard application built to function across all Windows devices, like notebooks, tablets and smartphones – it can be imported directly into Windows Holographic.

_20A7187_web

The HoloLens was first announced in January, and formally unveiled to developers at Microsoft’s Build 2015 conference in San Francisco last week. During the conference, Microsoft ran a Holographic Academy, a four-hour deep dive course for developers wanting to learn how to build applications and experiences for the HoloLens. A 90-minute version offered a comprehensive introduction to the platform, allowing non-coders – including this writer – to get a detailed idea of what goes into building a holographic application.

At heart, the process is designed to locate a virtual object in the physical world, and to enable control via gaze – visual focus is key to pinpointing where an action will be executed – gesture and voice.

With gesture control, Microsoft has introduced a new gesture, simply comprising holding a finger in the air and simulating a tap on a keyboard – except it takes place in mid-air, executing an action represented by the spot where the gaze is focused. Voice can also be used to execute such commands, as well as to reset the scene, should the user get lost in the process.

The end result is magical. For a developer, the experience of making an object or application come to “reality” in mid-air is like seeing a new world for the first time. For the user, it is mesmerising to be able to stroll in and out of a virtual scene or application.

And this is no mere frivolous entertainment concept. It has massive implications for health and education.

During an opening keynote presentation at Build, the audience was treated to some of the dramatic, yet down-to-earth possibilities: A medical lecturer walking around a high-definition hologram of a heart, explaining its functioning; a paleontologist exploring a dinosaur skull; an architect demonstrating bridge construction.

_20A7185_web

That’s even before we get to the more visionary uses, like controlling the Mars Rover as if one is standing alongside it on the surface of the red planet; directing a virtual robot through a hazardous environment.

In one demonstration, a plain room is transformed as a virtual screen is placed on one wall and begins to run a movie; virtual furniture appears; and a live weather forecast from a standard weather app floats in mid-air.

Of course, the objects only exist while viewed through the HoloLens. Voice- and gesture-recognition allows only the viewer to interact wit the scene. In future versions, however, it is likely that multiple users will be able to interact jointly with a specific hologram. During the hands-on session, trainers refused to be drawn on the possibility, saying only that they are not yet talking about such functions.

Commercial release of the HoloLens is not yet scheduled and pricing strategy is still to be formulated.

Microsoft clearly wants to avoid the Google Glass debacle: the search giant had created massive expectations with its eye-level computer, but was blind-sided by and equally massive consumer and social backlash. It eventually pulled the plug on the project, and has gone back to the drawing board.

The HoloLens is a far larger and more overt gadget than Google Glass, but therein lies its greater appeal: it is very obviously a viewing device for specific purposes, and is not attempting to hide itself as a “wearable” like glasses.

The real key, of course, is whether people will find it more useful and more compelling to interact with a 3D hologram rather than a flat image on a screen. The fact that 3D movies have so far failed to convert a mass market that prefers movies flat on a screen, should provide an early caution against getting too excited about holograms.

However, if it can go beyond gimmicks like exploding floors and obvious educational applications, it may well bring new magic to the world of information and entertainment.

* Arthur Goldstuck is founder of World Wide Worx and editor-in-chief of Gadget.co.za. Follow him on Twitter on @art2gee, and subscribe to his YouTube channel at http://bit.ly/GGadgets

Featured

Low-cost wireless sport earphones get a kickstart

Wireless earphone brands are common, but not crowdfunded brands. BRYAN TURNER takes the K Sport Wireless for a run.

Published

on

As wireless technology becomes better, Bluetooth earphones have become popular in the consumer market. KuaiFit aspires to make them even more accessible to more people through a cheaper, quality product, by selling the K Sport Wireless Earphones directly from its Kickstarter page

KuaiFit has an app by the same name which offers voice-guided personal training services in almost every type of exercise, from cardio to weight-lifting. A vast range of connectivity to third-party sensors is available, like heart rate sensors and GPS devices, which work well with guided coaching. 

The app starts off with selecting a fitness level: beginner, intermediate and advanced. Thereafter, one has the ability to connect with real personal trainers via a subscription to its paid service. The subscription comes free for 6 months with the earphones, and R30 per month thereafter. 

The box includes a manual, a USB to two USB Type B connectors, different sized soft plastic eartips and the two earphone units. Each earphone is wireless and connects to the other independently of wires. This puts the K Sport Wireless in the realm of the Apple Earpods in terms of connection style. 

The earphones are just over 2cm wide and 2cm high. The set is black with a light blue KuaiFit logo on the earphone’s button. 

The button functions as an on/off switch when long-pressed and a play/pause button when quick-pressed. The dual-button set-up is convenient in everyday use, allowing for playback control depending on which hand is free. Two connectivity modes are available, single earphone mode or dual earphone mode. The dual earphone mode intelligently connects the second earphone and syncs stereo audio a few seconds after powering on. 

In terms of connectivity, the earphones are Bluetooth 4.1 with a massive 10-meter range, provided there are no obstacles between the device and the earphones. While it’s not Bluetooth 5, it still falls into the Bluetooth Low Energy connection category, meaning that the smartphone’s battery won’t be drastically affected by a consistent connection to the earphones. The batteries within the earphones aren’t specifically listed but last anywhere between 3 and 6 hours, depending on the mode. 

Audio quality is surprisingly good for earphones at this price point. The headset style is restricted to in-ear due to its small design and probable usage in movement-intensive activities. As a result, one has to be very careful how one puts these earphones, in because bass has the potential of getting reduced from an incorrect in-ear placement. In-ear earphones are usually notorious for ear discomfort and suction pain after extended usage. These earphones are one of the very few in this price range that are comfortable and don’t cause discomfort. The good quality of the soft plastic ear tip is definitely a factor in the high level of comfort of the in-ear earphone experience.

Overall, the K Sport Wireless earphones are great considering the sound quality and the low price: US$30 on Kickstarter.

Find them on Kickstarter here.

Continue Reading

Featured

Taxify enters Google Maps

A recent update to Taxify now uses Google Maps which allows users to identify their drivers, find public transport and search for billing options.

Published

on

People planning their travel routes using Google Maps will now see a Taxify icon in the app, in addition to the familiar car, public transport, walking and billing options.

Taxify started operating in South Africa in 2016 and as of October 2018 operates in seven South African cities – Johannesburg, Ekurhuleni, Tshwane, Cape Town, Durban, Port Elizabeth and Polokwane.

Once riders have searched for their destination and asked the app for directions, Google Maps shares the proximity of cars on the Taxify platform, as well as an estimated fare for the trip.

If users see that taking the Taxify option is their best bet, they can simply tap on the ‘Open app’ icon, to complete the process of booking the ride. Customers without the app on their device will be prompted to install Taxify first.

This integration makes it possible for users to evaluate which of the private, public or e-hailing modes of transport are most time-efficient and cost-effective.

“This integration with Google Maps makes it so much easier for users to choose the best way to move around their city,” says Gareth Taylor, Taxify’s country manager for South Africa. “They’ll have quick comparisons between estimated arrival times for the different modes of transport, as well as fares they can expect to pay, which will help save both time and money,” he added.

Taxify rides in Google Maps are rolling out globally today and will be available in more than 15 countries, with South Africa being one of the first countries to benefit from this convenient service.

Continue Reading

Trending

Copyright © 2018 World Wide Worx