Connect with us

Featured

Facebook CTO lays out roadmap

Published

on

Facebook’s long-term roadmap is focused on building technologies in connectivity, AI, and VR as it believes research in these areas will help us progress toward opening the world to everyone, writes MIKE SCHROEPFER, Facebook CTO.

Our work in AI is helping us move all these projects forward. We’re conducting industry-leading research to help drive advancements in AI disciplines like computer vision, language understanding, and machine learning. We then use this research to build infrastructure that anyone at Facebook can use to build new products and services. We’re also applying AI to help solve longer-term challenges as we push forward in the fields of connectivity and VR. And to accelerate the impact of AI, we’re tackling the furthest frontiers of research, such as teaching computers to learn like humans do — by observing the world.

Our approach: From research to platforms to production

As the field of AI advances quickly, we’re turning the latest research breakthroughs into tools, platforms, and infrastructure that make it possible for anyone at Facebook to use AI in the things they build. Examples include:

  • FBLearner Flow: The backbone of AI-based product development at Facebook. This platform makes AI available to everyone at Facebook for a wide variety of purposes. FBLearner Flow has helped make AI so accessible within Facebook that nearly 70% of the people using the platform here are not AI experts. With the help of the platform we’re now seeing twice as many AI experiments run per month at Facebook compared with six months ago.
  • AutoML: The infrastructure that allows engineers to optimize new AI models using existing AI. Put another way: We’re training and testing more than 300,000 machine learning models each month, and AutoML can automatically apply the results of each test to other machine learning models to make them better. This eliminates work for engineers and helps us improve our AI capabilities faster.
  • Lumos: A new self-serve platform that allows teams to harness the power of computer vision for their products and services without the need for prior expertise. For the teams who work to keep people on Facebook safe, this has helped improve our ability to spot content that violates our community standards.

With infrastructure like FBLearnerFlow, AutoML, and Lumos, AI research is going into production at Facebook faster than ever.

AI already improving Facebook products and services

As engineers apply AI at scale, it’s already making an impact on the lives of people who use our products and services every day. AI assists in automatically translating posts for friends who speak different languages, and in ranking News Feed to show people more-relevant stories. Over the next three to five years, we’ll see even more new features as AI expands across Facebook.

Even more exciting, AI can enable entirely new tools for creativity and connection. As people increasingly express themselves through video, we’ve been focused on giving people more video-first ways to share across the Facebook family of apps. As part of this, we started working on style transfer, a technology that can learn the artistic style of a painting and then apply that style to every frame of a video. This is a technically difficult trick to pull off, normally requiring that the video content be sent to data centers for the pixels to be analyzed and processed by AI running on big-compute servers. But the time required for data transfer and processing made for a slower experience. Not ideal for letting people share fun content in the moment.

Just three months ago we set out to do something nobody else had done before: ship AI-based style transfer running live, in real time, on mobile devices. This was a major engineering challenge, as we needed to design software that could run high-powered computing operations on a device with unique resource constraints in areas like power, memory, and compute capability. The result is Caffe2Go, a new deep learning platform that can capture, analyze, and process pixels in real time on a mobile device. We found that by condensing the size of the AI model used to process images and videos by 100x, we’re able to run deep neural networks with high efficiency on both iOS and Android. This is all happening in the palm of your hand, so you can apply styles to videos as you’re taking them. Check out our blog post to read more on how we did this.

Having an industrial-strength deep learning platform on mobile enables other possibilities too. We can create gesture-based controls, where the computer can see where you’re pointing and activate different styles or commands. We can recognize facial expressions and perform related actions, like putting a “yay” filter over your selfie when you smile. With Caffe2Go, AI has opened the door to new ways for people to express themselves.

AI powers innovation in VR and connectivity for the next decade

 

AI is also making a big impact on the new technologies that will shape the next decade.

In VR, image and video processing software powered by computer vision is improving immersive experiences and helping to support hardware advances. Earlier this year we announced a new stabilization technology for 360 videos, powered by computer vision. And computer vision software is enabling inside-out tracking to help usher in a whole new category of VR beyond PC and mobile, as we announced at Oculus Connect 3 last month. This will help make it possible to build high-quality, standalone VR headsets that aren’t tethered to a PC.

Our work on speech recognition is also helping us create more-realistic avatars and new UI tools for VR. You can see a great example from our social VR demo at Oculus Connect 3, when the avatars moved their lips in sync with the speaking voices. This helps to create a feeling of presence with other people in VR. To do this, we built a custom library that maps speech signals into visemes (visual lip movement).

Speech recognition can also make it easier to interact with your environment in VR through hands-free voice commands. Our Applied Machine Learning team is working with teams across Facebook to explore more applications for social VR and the Oculus platform.

AI technologies are also contributing to our connectivity projects, including aerial systems like Aquila and terrestrial systems like Terragraph. With computer vision tools we can perform better analyses of potential deployment plans as we explore different modes of connectivity technology. This has already helped us map the world’s population density in much more accurate detail than ever before, giving us a clearer picture of where specific connectivity technologies would be most effective. And now we’re applying computer vision to 3D city analysis to help plan deployments of millimeter wave technologies like Terragraph in dense urban areas. As wireless networks become denser with increasing bandwidth demand, this automated solution lets us process more radio installation sites at a finer granularity. The system first detects possible installation sites for network equipment by separating poles from other aspects of the urban environment (trees, ground, and wires) using 3D city data. Then the AI algorithm performs line-of-sight analysis to identify radio propagation paths connecting nearby sites with clear line-of-sight. Finally, an optimization framework will use the data to automatically plan a network with optimal site and path selection to serve the bandwidth demand.

The next research challenges in AI

To continue accelerating the impact of AI, we’re also investing in long-term research. In recent years, the state of AI research has advanced very quickly — but there’s still a long way to go before computers can learn, plan, and reason like humans. That’s the next frontier of AI research.

Computers are quickly getting better at understanding a visual scene and identifying the objects within each frame. Even in the last few years, computer systems have advanced from basic image segmentation (drawing a box around the area where an object is located) to an ability to segment these objects more precisely and label them with information. Now, we can even apply this to video to calculate human poses in real time.

With the ability to label objects, computers can generate captions about what’s happening in a photo. This is what helps us describe photos to visually impaired people on Facebook today. But at the same time, the technology is still very early and it’s not perfect yet. Below you can see one example of where this technology worked well, followed by one where it went wrong:

unnamed
And while computers can label objects more or less accurately, they still can’t take it one step further to understand the context surrounding the objects they see. For example, look at the image below this paragraph. Is that a vegetarian pizza?

unnamed-1

It’s not. But how did you know? To come up with your answer, you first saw and identified the sausage on the pizza. Then you applied context in the form of facts and concepts that you know about the world — like, “sausage is meat” and “vegetarian means that there is no meat.” Computers can’t do this, because they don’t have contextual understanding of the world.

Some of our research has focused on giving computers this contextual understanding. To do this, we need to give them a model by which they can understand the world — a set of facts and concepts they can draw from in order to answer questions like the one about the pizza. We also need computers to remember multiple facts at once. In the example below, our team trained computers with structured data and Memory Networks to enable simple reasoning. A year ago, no AI system could complete tasks like the ones you see below. But progress is moving very quickly. A few months ago, we published research in which we trained computers to perform 19 out of 20 tasks correctly. And just last week, we submitted a paper for academic review that presents a new type of system, Recurrent Entity Network, that can solve all 20 tasks.

unnamed-2
The problem is, most data is not neatly structured in the real world. So to reason more like humans, computers must be able to pick relevant facts from an unstructured source, like a Wikipedia article, and apply those facts to answering a question. It’s early, but we’re working on this with research on key value memory networks. Below is a project called WikiQ&A where we’ve trained computers to answer questions that require identifying and combining a few facts from unstructured text.

Despite this progress, there’s a lot more work required to make computer systems truly intelligent. Prediction is one important component of intelligence that humans learn naturally but computers can’t yet do. To understand this, think of holding a water bottle above the ground and letting go. What happens to the bottle?

unnamed-3
You know that the bottle will fall. You learned this through a process called predictive learning — by forming hypotheses and testing them. As a toddler, you threw food off table, and quickly you realized that it would fall. But looking at this scenario, a computer has no ability to tell what will happen next. We’re coming up with methods that allow computers to learn by observing the world. In this example, the computer attempts to predict what will happen next in the video by observing the previous frames. This is the state-of-the-art in AI today. It’s the best prediction we’ve been able to achieve, but it’s not perfect yet. You can see that the image gets fuzzier as we advance forward in time, indicating the computer is less sure about what will happen. This area of research is very early, and there’s a long way to go, but computers can eventually learn the ability to predict the future by observing, modeling, and reasoning.

It’s exciting how AI has progressed over such a short time, and it’s exciting to think about what’s next. When our research succeeds in teaching computers all the abilities I outlined above — context, knowledge about the world, reasoning, and predicting — these will add up to something like what we call common sense. And when computers have common sense they can interact with us in better, more natural ways, from surfacing the most relevant information for us and assisting us with tasks to enabling whole new ways for people to connect. We’re off to a good start, and I can’t wait to see what tomorrow brings.

Featured

Android Go puts reliable smartphones in budget pockets

Nokia, Vodacom and Huawei have all launched entry-level smartphones running the Android Go edition, and all deliver a smooth experience, writes BRYAN TURNER.

Published

on

Three new and notable Android Go smartphones have recently hit the market, namely the Nokia 1, the Vodafone Smart Kicka 4 and the Huawei Y3 (2018). These phones run one of the most basic versions of Android while still delivering a fairly smooth user experience.

Historically, consumers purchasing smartphones in the budget bracket would have a hit-and-miss experience with processing speed, smoothness of user interface, and app stability. The Google-supported Android Go edition operating system optimises the user experience by stripping out non-important visual effects to speed up the phone. Thish allows for more memory to be used by apps. 

Google also ensures that all smartphones running Android Go will receive feature and security updates as they are released by Google. This is a major selling point for these smartphones, as users of this smartphone will always be running the latest software, with virtually no manufacturer bloatware.

Vodafone Smart Kicka 4

At the lowest entry-level, the Vodafone Smart Kicka 4 performs well as a communicator for emails and WhatsApp messages. The 4” screen represents a step up for entry-level Android phones, which were previously standardised at 3.5”.

The display is bright and very responsive, while the limited screen real estate leaves the navigation keys off the screen as touch buttons. It uses 3G connectivity, which might seem like an outdated technology, but is good enough to stream SD videos and music. Vodacom has also thrown in some data gifts if the smartphone is activated before the end of September 2018. 

Its camera functionalities might be a slight let down for the aspirant Instagrammer, with a 2MP rear flash camera and a 0.3MP selfie snapper. Speed wise, the keyboard pops up quickly, which is a huge improvement from the Smart Kicka 3. However, this phone will not play well with graphics-intensive games. 

Nokia 1

Next up is the Nokia 1, which adds a much better 5MP camera, improved battery life and a bigger 4.5” screen. It supports LTE, which allows this smartphone to download and upload at the speed of flagships. It also sports the Nokia brand name, which many consumers trust.

Although the front camera is 2MP, the quality is extremely grainy, even with good lighting. This disqualifies this smartphone for the social media selfie snapper, but the 5MP rear camera will work for the landscape and portrait photographer. 

The screen also redeems this smartphone, providing a display which represents colours truly and has great viewing angles. Xpress-on back covers allows the use of interchangeable, multi-coloured back covers, which has proven to be a successful sales point for mid-range smartphones in the past. 

Huawei Y3 (2018)

The most capable of the Android Go edition competitors, the Huawei Y3 (2018) packs an even bigger screen at 5”, as well as an improved 8MP rear camera and HD video recording. The screen is the brightest and most vibrant of the three smartphones, but seems to be calibrated to show colours a little more saturated than they actually are. 

Nevertheless, the camera outperforms the other smartphones with good colour replication and great selfie capabilities via the 2MP front camera – far superior to the Nokia 1 despite the same spec. LTE also comes standard with this smartphone and Vodacom throws in 4G/LTE data goodies until the end of September 2018. The battery, however, is not removable and may only be replaced by a warranty technician.

Comparing the 3

All three smartphones have removable back covers, which provide access to the battery, SIM card and SD card slots. The smartphones have Micro USB ports on the bottom with headphone jacks on the top. The built-in speakers all performed well, with the Y3 (2018) housing an exceptionally loud built-in speaker. 

Although all at different price points, all three phones remain similar in performance and speed. The differentiators are apparent in the components, like camera quality and screen quality. It would be fair to rank the quality of the camera and battery life by respective market prices. The Vodafone Smart Kicka 4 performed well, for its R399 retail price. The Nokia 1, on the other hand, lags quite a bit in features when compared to the Huawei Y3 (2018), bwith oth retailing at R999.

Continue Reading

Featured

SA gets digital archive

As the world entered the centenary of Nelson Mandela’s birth on Mandela Day, 18 July 2018, South Africa celebrated the launch of a digital living archive. 

Published

on

The southafrica.co.za  site carries content about the country’s collective heritage in South Africa’s eleven official languages.

Designed as a nation building,  educational and brand promotion web based tool, the free-to-view platform features award-winning photographic and written content by leading South African photographers, authors, academics and photojournalists.

The emphasis is on quality, credible, factual content that celebrates a collective heritage in terms of the following: Cultural Heritage; Natural Heritage; Education; History; Agriculture; Industry; Mining; and Travel.

At the same time as reflecting on the nation’s history, southafrica.co.za celebrates South Africa’s natural, cultural and economic assets so that the youth can learn about their nation in their home language.

Southafrica.co.za Founder and CEO Hans Gerrizen conceptualised southafrica.co.za as a means for youth and communities from outlying areas to benefit from the digital age in terms of the web tool’s empowering educational component.

“We can only stand to deepen our collective experience of democracy and become a more forward planning nation if we know facts about our nation’s past and present in everyone’s home language,” he says.

Southafrica.co.za, with sister company Siyabona Africa, is the organiser and sponsor of the Mandela: 100 Moments photographic exhibition that runs until 30 September at Cape Town’s V&A Waterfront-based Nelson Mandela Gateway to Robben Island.  The 3-month exhibition, which runs daily from 08h00 until 15h00, is showcasing one hundred iconic Nelson Mandela images taken by veteran South African photojournalist and self-taught lensman Peter Magubane.

Continue Reading

Trending

Copyright © 2018 World Wide Worx