Connect with us

Cars

Connected cars prepare UK roads for self-driving

Jaguar Land Rover is testing smart, connected cars on UK roads to prepare for self-driving cars.

Published

on

The tests on public roads are part of £7.1 million project aimed at creating the UK’s first fully connected infrastructure geared towards self-driving cars. More than 40 miles of the M40, M42, A45 and A46 will benefit from a world-first combination of wireless technologies (DSRC, 3/4G mobile networks, WiFi and fibre optic networks), ensuring vehicles can always be connected to each other and to infrastructure. 

Connecting cars to each other and their surroundings (known as V2X) is a vital step for safe, large-scale deployment of self-driving cars. The latest connected technology complements other vehicle sensors and extends a vehicle’s ability to ‘see’ further down the road and ‘speak’ to other vehicles, infrastructure, pedestrians and the network. For instance, warning that a car too far ahead to see has applied its brakes allows a following driver to avoid a potential accident.  The system will work on both manual and autonomous driving and so will greatly improving road safety across levels of autonomy.

Colin Lee, Jaguar Land Rover Connectivity Manager, said:

“To realise the full benefit of self-driving cars, we need to understand the infrastructure that’s required to support them. Connectivity not only takes us a step closer to making self-driving cars a reality but it also creates the platform to bring more connected safety features to our customers within the next few years. We’re working with some fantastic global experts across industry and academia and we’re eager to take the project into this next phase of testing.”

Jaguar Land Rover will be trialling a range of intelligent connected features such as emergency electronic brake light warning (EEBL), emergency vehicle warning (EVW), and in-vehicle signage (IVS) for roadworks warning (RWW) and traffic condition warning (TCW).

UK CITE is just one of the connected and autonomous projects which is helping Jaguar Land Rover to offer customers an increased choice of features, while maintaining an enjoyable and safe driving experience. This project forms part of the company’s vision to leverage connectivity as a segue to making the self-driving car viable in the widest range of real-life, on- and off-road driving conditions.

Cars

Project Bloodhound saved

The British project to break the world landspeed record at a site in the Northern Cape has been saved by a new backer, after it went into bankruptcy proceedings in October.

Published

on

Two weeks ago,  and two months after entering voluntary administration, the Bloodhound Programme Limited announced it was shutting down. This week it announced that its assets, including the Bloodhound Supersonic Car (SSC), had been acquired by an enthusiastic – and wealthy – supporter.

“We are absolutely delighted that on Monday 17th December, the business and assets were bought, allowing the Project to continue,” the team said in a statement.

“The acquisition was made by Yorkshire-based entrepreneur Ian Warhurst. Ian is a mechanical engineer by training, with a strong background in managing a highly successful business in the automotive engineering sector, so he will bring a lot of expertise to the Project.”

Warhurst and his family, says the team, have been enthusiastic Bloodhound supporters for many years, and this inspired his new involvement with the Project.

“I am delighted to have been able to safeguard the business and assets preventing the project breakup,” he said. “I know how important it is to inspire young people about science, technology, engineering and maths, and I want to ensure Bloodhound can continue doing that into the future.

“It’s clear how much this unique British project means to people and I have been overwhelmed by the messages of thanks I have received in the last few days.”

The record attempt was due to be made late next year at Hakskeen Pan in the Kalahari Desert, where retired pilot Andy Green planned to beat the 1228km/h land-speed record he set in the United States in 1997. The target is for Bloodhound to become the first car to reach 1000mph (1610km/h). A track 19km long and 500 metres wide has been prepared, with members of the local community hired to clear 16 000 tons of rock and stone to smooth the surface.

The team said in its announcement this week: “Although it has been a frustrating few months for Bloodhound, we are thrilled that Ian has saved Bloodhound SSC from closure for the country and the many supporters around the world who have been inspired by the Project. We now have a lot of planning to do for 2019 and beyond.”

Continue Reading

Cars

Motor Racing meets Machine Learning

The futuristic car technology of tomorrow is being built today in both racing cars and
toys, writes ARTHUR GOLDSTUCK

Published

on

The car of tomorrow, most of us imagine, is being built by the great automobile manufacturers of the world. More and more, however, we are seeing information technology companies joining the race to power the autonomous vehicle future.

Last year, chip-maker Intel paid $15.3-billion to acquire Israeli company Mobileye, a leader in computer vision for autonomous driving technology. Google’s autonomous taxi division, Waymo, has been valued at $45-billion.

Now there’s a new name to add to the roster of technology giants driving the future.

DeepRacer on the inside

Amazon Web Services, the world’s biggest cloud computing service and a subsidiary of Amazon.com,  last month unveiled a scale model autonomous racing car for developers to build new artificial intelligence applications. Almost in the same breath, at its annual re:Invent conference in Las Vegas, it showcased the work being done with machine learning in Formula 1 racing.

AWS DeepRacer is a 1/18th scale fully autonomous race car, designed to incorporate the features and behaviour of a full-sized vehicle. It boasts all-wheel drive, monster truck tires, an HD video camera, and on-board computing power. In short, everything a kid would want of a self-driving toy car.

But then, it also adds everything a developer would need to make the car autonomous in ways that, for now, can only be imagined. It uses a new form of machine learning (ML), the technology that allows computer systems to improve their functions progressively as they receive feedback from their activities. ML is at the heart of artificial intelligence (AI), and will be core to autonomous, self-driving vehicles.

AWS has taken ML a step further, with an approach called reinforcement learning. This allows for quicker development of ML models and applications, and DeepRacer is designed to allow developers to experiment with and hone their skill in this area. It is built on top of another AWS platform, called Amazon SageMaker, which enables developers and data scientists to build, train, and deploy machine learning quickly and easily.

Along with DeepRacer, AWS also announced the DeepRacer League, the world’s first global autonomous racing league, open to anyone who orders the scale model from AWS.

DeepRacer on the outside

As if to prove that DeepRacer is not just a quirky entry into the world of motor racing, AWS also showcased the work it is doing with the Formula One Group. Ross Brawn, Formula 1’s managing director of Motor Sports, joined AWS CEO Andy Jassy during the keynote address at the re:Invent conference, to demonstrate how motor racing meets machine learning.

“More than a million data points a second are transmitted between car and team during a Formula 1 race,” he said. “From this data, we can make predictions about what we expect to happen in a wheel-to-wheel situation, overtaking advantage, and pit stop advantage. ML can help us apply a proper analysis of a situation, and also bring it to fans.

“Formula 1 is a complete team contest. If you look at a video of tyre-changing in a pit stop – it takes 1.6 seconds to change four wheels and tyres – blink and you will miss it. Imagine the training that goes into it? It’s also a contest of innovative minds.”

AWS CEO Andy Jassy unveils DeepRacer

Formula 1 racing has more than 500 million global fans and generated $1.8 billion in revenue in 2017. As a result, there are massive demands on performance, analysis and information. 

During a race, up to 120 sensors on each car generate up to 3GB of data and 1 500 data points – every second. It is impossible to analyse this data on the fly without an ML platform like Amazon SageMaker. It has a further advantage: the data scientists are able to incorporate 65 years of historical race data to compare performance, make predictions, and provide insights into the teams’ and drivers’ split-second decisions and strategies.

This means Formula 1 can pinpoint how a driver is performing and whether or not drivers have pushed themselves over the limit.

“By leveraging Amazon SageMaker and AWS’s machine-learning services, we are able to deliver these powerful insights and predictions to fans in real time,” said Pete Samara, director of innovation and digital technology at Formula 1.

  • Arthur Goldstuck is founder of World Wide Worx and editor-in-chief of Gadget.co.za. Follow him on Twitter on @art2gee and on YouTube

Continue Reading

Trending

Copyright © 2018 World Wide Worx