Connect with us

Featured

How hackers are using stealth to evade detection

Published

on

Hackers are evading traditional detection applications with a new approach called Application program interface hooking. LUKE JENNINGS, Chief Research Officer for Countercept at MWR InfoSecurity, takes a look at what API hooking is and how it can be thwarted.

Traditional malware detection and forensic investigation techniques typically focus on detecting malicious native executables on disk, and performing disk forensics to uncover evidence of historical actions on a system. In response, many threat actors have shifted their offensive techniques to avoid writing to disk, staying resident only in memory. Consequently, the ability to effectively analyse live memory for evidence of compromise and to gather additional forensic evidence has become increasingly important.

Application program interface (API) hooking is one of the memory-resident techniques cyber criminals are increasingly using. The process involves intercepting function calls in order to monitor and/or change the information passing back and forth between them. There are many reasons, both legitimate and malicious, why using this might be desirable. In the case of malware, the API hooking process is commonly considered to be ‘rootkit’ functionality and is mostly used to hide evidence of its presence on the system from other processes, and to spy on sensitive data.

How are the cyber criminals using API hooking?

There are two common use cases for the malicious use of API hooking. Firstly, it can be used to spy on sensitive information and so they use it to intercept sensitive data, such as communications with the keyboard to log keystrokes including passwords that are typed by a user, or sensitive network communications before they are transmitted. This includes the ability to intercept data encrypted using protocols such as Transport Layer Security (TLS) prior to the point at which they are protected, in order to capture passwords and other sensitive data before it is transmitted.

Secondly, they modify the results returned from certain API calls in order to hide the presence of their malware. This commonly may involve file-system or registry related API calls to remove entries used by the malware, to hide its presence from other processes. Not only can cyber criminals implement API hooking in a number of ways, the technique can also be deployed across a wide range of processes on a targeted system.

Tackling malicious API hooking

One way cyber security teams can detect the hidden traces of API hooking and other similar techniques is through memory analysis frameworks such as Volatility. Volatility is an open-source framework and the de facto standard toolset for performing memory analysis techniques against raw system memory images, useful in forensic investigations and malware analysis. The Volatility framework is very valuable when performing an in-depth investigation of systems on which day-to-day compromises have been detected.

While memory analysis can be an incredibly powerful and useful technique, it does not come without its challenges. One hurdle to consider when deploying memory analysis is the labour intensity it requires. Memory analysis is a highly skilled and time-intensive technique typically performed on one image at a time. This can be very effective when performing a dedicated investigation of a serious compromise, where the systems involved are known and relatively small in number. However, the challenge arises when trying to use memory analysis at scale to detect compromises on a large enterprise network in the absence of any other evidence.

Another obstacle to be aware of when implementing memory analysis is legitimate ‘bad’ behaviour. There are plenty of examples of hooking techniques being used by malware for malicious purposes. Nevertheless, there are also many cases of these techniques being used for legitimate, above-board purposes. In particular, technologies such as data loss prevention and antivirus often target the same functions for hooking as malware does. Without the techniques and experience to quickly separate legitimate injection and hooking from malicious behaviour, a great deal of time can be wasted.

Successful attack detection and response 

As a first step in dealing with techniques like this, organisations need the capability in place to easily retrieve system memory images from suspect machines to allow rapid response and aid forensic investigation. However, this can generally only be used in a reactive manner.

To perform effective attack detection and response at scale specifically with regard to these techniques, an ability to conduct memory analysis proactively at scale across an enterprise network is required, which is where toolsets continuously conducting live memory analysis and reporting on suspicious findings are required. This will enable the proactive discovery of unknown memory-resident malware without any prior knowledge or signatures.

Good Endpoint Detection and Response (EDR) software that offers live memory analysis capabilities at scale are required to proactively detect the direct use of techniques such as live memory analysis. Additionally, when gathering results at scale, approaches such as anomaly detection can help greatly by drawing a dividing line between API hooking that is common across the network, probably due to security software in use, and anomalous API hooking that seems present only in a few isolated cases. Traditional memory forensics using a tool such as Volatility can then be used in order to investigate, in detail, systems exhibiting suspicious behaviour.

Conclusion

Many malware families have moved to using techniques such as API hooking in a stealthy attempt to avoid traditional security solutions and achieve certain end goals, such as spying on passwords. The 2015 Verizon Data Breach Report found that “malware is part of the event chain in virtually every security incident”. It also reported that “70-90% of malware samples are unique to an organisation” and that “organisations would need access to all threat intelligence indicators in order for the information to be helpful.” Given these findings, it is obvious that having an effective technique for discovering previously unseen malware on your network is extremely important.

Overall, memory analysis can be used to uncover some, not all, of the stealth techniques used by modern malware families. However, it is an important capability to have in order to detect compromises using modern memory-resident malware.

Featured

When will we stop calling them phones?

If you don’t remember when phones were only used to talk to people, you may wonder why we still use this term for handsets, writes ARTHUR GOLDSTUCK, on the eve of the 10th birthday of the app.

Published

on

Do you remember when handsets were called phones because, well, we used them to phone people?

It took 120 years from the invention of the telephone to the use of phones to send text.

Between Alexander Graham Bell coining the term “telephone” in 1876 and Finland’s two main mobile operators allowing SMS messages between consumers in 1995, only science fiction writers and movie-makers imagined instant communication evolving much beyond voice. Even when BlackBerry shook the business world with email on a phone at the end of the last century, most consumers were adamant they would stick to voice.

It’s hard to imagine today that the smartphone as we know it has been with us for less than 10 years. Apple introduced the iPhone, the world’s first mass-market touchscreen phone, in June 2007, but it is arguable that it was the advent of the app store in July the following year that changed our relationship with phones forever.

That was the moment when the revolution in our hands truly began, when it became possible for a “phone” to carry any service that had previously existed on the World Wide Web.

Today, most activity carried out by most people on their mobile devices would probably follow the order of social media in first place – Facebook, Twitter, Instagram and LinkedIn all jostling for attention – and  instant messaging in close second, thanks to WhatsApp, Messenger, SnapChat and the like. Phone calls – using voice that is – probably don’t even take third place, but play fourth or fifth fiddle to mapping and navigation, driven by Google Maps and Waze, and transport, thanks to Uber, Taxify, and other support services in South Africa like MyCiti,  Admyt and Kaching.

Despite the high cost of data, free public Wi-Fi is also seeing an explosion in use of streaming video – whether Youtube, Netflix, Showmax, or GETblack – and streaming music, particularly with the arrival of Spotify to compete with Simfy Africa.

Who has time for phone calls?

The changing of the phone guard in South Africa was officially signaled last week with the announcement of Vodacom’s annual results. Voice revenue for the 2018 financial year ending 31 March had fallen by 4.6%, to make up 40.6% of Vodacom’s revenue. Total revenue had grown by 8.1%, which meant voice seriously underperformed the group, and had fallen by 4% as a share of revenue, from 2017’s 44.6%.

The reason? Data had not only outperformed the group, increasing revenue by 12.8%, but it had also risen from 39.7% to 42.8% of group revenue,

This means that data has not only outperformed voice for the first time – as had been predicted by World Wide Worx a year ago – but it has also become Vodacom’s biggest contributor to revenue.

That scenario is being played out across all mobile network operators. In the same way, instant messaging began destroying SMS revenues as far back as five years ago – to the extent that SMS barely gets a mention in annual reports.

Data overtaking voice revenues signals the demise of voice as the main service and key selling point of mobile network operators. It also points to mobile phones – let’s call them handsets – shifting their primary focus. Voice quality will remain important, but now more a subset of audio quality rather than of connectivity. Sound quality will become a major differentiator as these devices become primary platforms for movies and music.

Contact management, privacy and security will become critical features as the handset becomes the storage device for one’s entire personal life.

Integration with accessories like smartwatches and activity monitors, earphones and earbuds, virtual home assistants and virtual car assistants, will become central to the functionality of these devices. Why? Because the handsets will control everything else? Hardly.

More likely, these gadgets will become an extension of who we are, what we do and where we are. As a result, they must be context aware, and also context compatible. This means they must hand over appropriate functions to appropriate devices at the appropriate time. 

I need to communicate only using my earpiece? The handset must make it so. I have to use gesture control, and therefore some kind of sensor placed on my glasses, collar or wrist? The handset must instantly surrender its centrality.

There are numerous other scenarios and technology examples, many out of the pages of science fiction, that point to the changing role of the “phone”. The one thing that’s obvious is that it will be silly to call it a phone for much longer.

  • Arthur Goldstuck is founder of World Wide Worx and editor-in-chief of Gadget.co.za. Follow him on Twitter on @art2gee and on YouTube
Continue Reading

Featured

MTN 5G test gets 520Mbps

MTN and Huawei have launched Africa’s first 5G field trial with an end-to-end Huawei 5G solution.

Published

on

The field trial demonstrated a 5G Fixed-Wireless Access (FWA) use case with Huawei’s 5G 28GHz mmWave Customer Premises Equipment (CPE) in a real-world environment in Hatfield Pretoria, South Africa. Speeds of 520Mbps downlink and 77Mbps uplink were attained throughout respectively.

“These 5G trials provide us with an opportunity to future proof our network and prepare it for the evolution of these new generation networks. We have gleaned invaluable insights about the modifications that we need to do on our core, radio and transmission network from these pilots. It is important to note that the transition to 5G is not just a flick of a switch, but it’s a roadmap that requires technical modifications and network architecture changes to ensure that we meet the standards that this technology requires. We are pleased that we are laying the groundwork that will lead to the full realisation of the boundless opportunities that are inherent in the digital world.” says Babak Fouladi, Group Chief Technology & Information Systems Officer, at MTN Group.

Giovanni Chiarelli, Chief Technology and Information Officer for MTN SA said: “Next generation services such as virtual and augmented reality, ultra-high definition video streaming, and cloud gaming require massive capacity and higher user data rates. The use of millimeter-wave spectrum bands is one of the key 5G enabling technologies to deliver the required capacity and massive data rates required for 5G’s Enhanced Mobile Broadband use cases. MTN and Huawei’s joint field trial of the first 5G mmWave Fixed-Wireless Access solution in Africa will also pave the way for a fixed-wireless access solution that is capable of replacing conventional fixed access technologies, such as fibre.”

“Huawei is continuing to invest heavily in innovative 5G technologies”, said Edward Deng, President of Wireless Network Product Line of Huawei. “5G mmWave technology can achieve unprecedented fiber-like speed for mobile broadband access. This trial has shown the capabilities of 5G technology to deliver exceptional user experience for Enhanced Mobile Broadband applications. With customer-centric innovation in mind, Huawei will continue to partner with MTN to deliver best-in-class advanced wireless solutions.”

“We are excited about the potential the technology will bring as well as the potential advancements we will see in the fields of medicine, entertainment and education. MTN has been investing heavily to further improve our network, with the recent “Best in Test” and MyBroadband best network recognition affirming this. With our focus on providing the South Africans with the best customer experience, speedy allocation of spectrum can help bring more of these technologies to our customers,” says Giovanni.

Continue Reading

Trending

Copyright © 2018 World Wide Worx