Connect with us

Mobile

How to develop that perfect BlackBerry app

Published

on

With BlackBerry’s recent phone announcements, thousands of South Africans are pointing their phone’s browsers to the BlackBerry application store in-order to spice up and personalise their phones. Endless developers are also getting their apps out a fast a furious rate to satisfy the demand. Here are RIM’s top-ten development tips for application vendors.

BlackBerry App World provides developers with a channel to reach over 50 million BlackBerry smartphone users across the world. It has opened a whole new world of possibilities for BlackBerry customers and developers alike.

There are already over 10,000 applications available to download, and on average, 1.5 million applications are being downloaded every day. If you are looking to develop an application for the BlackBerry platform, here are the top ten questions you should consider:

Does it just work?

The best applications should ‚just work‚ regardless of how complex the programme is. Users should be able to use the basic functions of the application without having to open a manual or check a user forum.

Will it pass the traffic light test?

Users should be able to use an application’s features in the time it takes for a traffic light to turn from red to green. For example, in the BlackBerry Messenger application it is possible to scan a few messages and even type a quick response in a matter of minutes.

Does it anticipate users’ actions?

Applications must be intuitive and should be developed by anticipating exactly how they will be used. It is important that they have clear layouts and intuitive icon placement to ensure that users can navigate and employ its functions quickly and easily.

Does it integrate with the BlackBerry experience?

BlackBerry smartphone users will be most at ease and impressed with applications that take advantage of the overall BlackBerry experience. For example, a mobile social networking application that uses the device’s camera to take a photo and uses the integrated GPS to give it a location-based tag is much more valuable than an application that does not utilise any of the device’s native features.

Will it minimise battery drain?

Developers should ensure that applications do not degrade the overall performance of the device, in particular the battery life. Even if the application is crucial to the user it will not be seen as a viable option if it drains the battery life of the device significantly.

Does it capitalise on ‚push‚ ?

Successful BlackBerry smartphone applications should capitalise on RIM’s innovative push technology. Push technology means that BlackBerry smartphone users never need to go looking for new information – instead it comes to them. This functionality changes the way users interact with their mobile device by reducing the frequency with which they have to seek out new information. A successful push application also uses the wireless network judiciously, only delivering information when necessary or when users call for it.

Does it use wireless access judiciously?

An application that judiciously employs wireless resources will frequently provide a better overall experience to the user and put less strain on the operator’s network. For example, a mobile weather application that is set to update itself every hour should only send or receive data if the current weather conditions have changed. For example, a mobile weather application may update itself every hour, even if they current conditions haven’t changed in days. This represents inefficient use of the wireless network, as there is actually no need for that data to be sent.

Does it work offline as well as online?

For applications that require internet access, developers must consider how the programme will be used during times when the user is in an area with little or no coverage. Therefore, BlackBerry smartphone applications should utilise push technology to ensure that vital information is stored locally on the device so a wireless connection is not essential for its use.

Does it have a responsive user interface?

The best BlackBerry applications have user interfaces that are speedy and responsive to user commands.

Does it utilise device specific features?

Developers should write applications with a specific device model in mind as they are usually more attractive than applications that provide few or no custom features. In a similar vein to the GPS photo tagging, an application that uses the device’s native GPS feature to determine the user’s location when searching for local amenities will be much more valuable than one that requires the user to enter their postcode or city name.

Continue Reading

Featured

Prepare for Wi-Fi 6

From traffic to healthcare, the applications of the new Wi-Fi 6 standard are set to transform how we connect.

Published

on

20 years ago, with the release of 802.11b, Wi-Fi began its conquest of the world networking scene in earnest. Wi-Fi can easily be called out as one of the most popular technologies of the last two decades. Just as mobile telephony and mobile internet, it has become a part of everyday life. And with the advent of IoT and the introduction of 5G, the time has come for the new standard – Wi-Fi 6.

Beyond being significantly faster than the previous generation, Wi-Fi 6 delivers up to four times greater capacity. Latency is vastly improved, allowing for near real-time use cases. Wi-Fi 6 is also easier on connected devices’ batteries.

So what impact will Wi-Fi 6 have on business in the coming years?

Digitisation, mobility and IoT are driving the need for connectivity. By 2022, more IP traffic will cross global networks than in all prior ‘internet years’ combined up to the end of 2016. In other words, more traffic will be created in 2022 than in the 32 years since the internet started. In 3 years, 28 billion devices will be connected to the Internet, many of which (robots, production lines, medical devices) will communicate over a wireless network. Against this background, it is easy to understand why we need a redesigned wireless standard that is more responsive to present and future challenges.

Wi-Fi 6: The business impact

“In the first phase, we expect the new wireless standard to gain a significant foothold in the B2B field, where it brings important innovations,” said Garsen Naidu, Country Manager, Cisco South Africa. “We will see it, together with other technologies, penetrate significantly into manufacturing, into the logistics industry. The technology is also more effective in high-density settings like large lecture halls, stadiums and conference rooms, so we are likely to see significant penetration in these settings too. And, with its extremely low latency, Wi-Fi 6 also promises to open up new opportunities in AR/VR, healthcare, and self-driving vehicles. ”

Ever since the launch of the Internet, every leap in network speed has had a major impact on technological innovation: 4G has brought along the age of smartphones, whilst 5G and Wi-Fi 6 will transform the business world. According to Cisco experts, these two technologies – 5G and Wi-Fi – will be widely adopted at the same time, complementing each other.

A short history of Wi-Fi

In 1999, half a dozen technology companies, including Aironet, which was later acquired by Cisco, formed the Wireless Ethernet Compatibility Alliance. The standard announced that year, 802.11b, which gained significant commercial traction, was the first to emerge under the ‘Wi-Fi’ brand. As such, 1999 marks the year in which Wi-Fi really began.

Solutions that carry the official Wi-Fi logo work consistently with the IEEE 802.11 data transfer standard. These solutions are certified by the Wi-Fi Alliance, which guarantees compatibility between various wireless devices. In addition, networking manufacturers have done a lot to improve compatibility. Launched as early as 2002, Cisco Compatible eXtensions is a free licensing program that has enabled other vendors’ Wi-Fi products to be securely deployed on Cisco wireless networks.

Subsequent developments in Wi-Fi technology included managing interference and increasing data stability. Cisco is supporting these with the Cisco Flexible Radio Assignment and Cisco CleanAir technologies. The latter is capable of identifying and graphically displaying radio interference, identifying the source of the problem, and directing users to other, less crowded, channels.

Challenges of the present and opportunities for the future

One of the most widespread business applications of wireless technology is office Wi-Fi. Using Wi-Fi, employees can move freely and access the network from anywhere where there is a hotspot. Wi-Fi-based analysis and location services are also becoming increasingly popular. And with the spread of IoT, Wi-Fi is becoming ubiquitous, and is today found everywhere from agricultural fields to production lines.

“We see promising business opportunities and a wide range of new applications. At the same time, with hundreds and thousands of new devices connecting to wireless networks, IT teams are facing increasing complexity. So we need to rethink IT architectures from the ground-up,” added Naidu.

Much of this need to rethink network architectures is driven by the enormous growth in wireless connectivity.

Wi-Fi has driven growth in general IT use, which in turn has led to the need to provide and run bigger and more complex networks with a greater variety of endpoint device types on them. This complexity ‘feedback loop’, driven in no small part by Wi-Fi, requires that new solutions are developed to deal with this complexity.

Cisco has pioneered in this area, using AI, machine learning, and machine reasoning, via products such as Cisco DNA Assurance to eliminate manual troubleshooting and reduce the time spent resolving service issues.

The latest Wi-Fi 6 developments introduced earlier this year make a consistent, efficient and seamless wireless connectivity experience a reality.

Continue Reading

Mobile

Getting London wired

Published

on

Ruckus Wireless has been selected by Telefónica UK, which operates the O2 brand, to supply high-capacity small cell products for high-speed wireless services being deployed throughout London.

Already deployed throughout the busiest, iconic areas in central London, such as Trafalgar Square, Parliament Square, Leicester Square, Regent Street and Oxford Street, Ruckus SmartCell 8800s have initially been deployed to provide free, fast and reliable Wi-Fi to anyone.

Within a single, low-profile design, the SmartCell 8800 is the first carrier-grade, modular multi-radio system to integrate patented adaptive antenna array technology supporting multiple licensed and unlicensed radio technologies including: high-speed dual-band 802.11n Wi-Fi, small cell 3G/4G radios and 5GHz wireless backhaul. This gives Telefónica UK the flexibility to easily and economically offer high-speed Wi-Fi and cellular services in specific locations when needed.

‚”For O2, it’s all about us providing customers with fast and reliable connectivity where they need it,‚” said Derek McManus, chief operating officer for Telef√≥nica UK. ‚”Our vision is for Wi-Fi to be simply another access layer to our mobile core. Customers don’t really care about the underlying technology: they care about getting connected, fast and reliably. The introduction of small cells helps us to support these requirements and completely complements our mobile strategy by letting us push capacity closer to users in locations where it makes the most sense.‚”

‚”In telecoms there is now a mad race to the lamppost, and the first one there wins,‚” said Selina Lo, president and CEO of Ruckus Wireless. ‚”A big barrier in small cell deployment is simply securing the physical locations with the requisite power and backhaul to support small cells. Once physical assets secured, it becomes important for operators to exploit them with as much technology as they can. This means multi-function, carrier-grade products that are simple deploy, unobtrusive and massively scalable. SmartCell is one of those products and O2 is one of those operators taking a lead in this race.‚”

After extensive evaluations of wireless suppliers, Telef√≥nica UK selected Ruckus and its SmartCell system. ‚”It all really boiled down to who had the best Wi-Fi for carriers and the most forward-thinking strategy to integrate Wi-Fi within existing and future cellular infrastructure,‚” said McManus.

‚”Such partnerships prove that industry players are starting to see the benefits Wi-Fi is bringing to their services,‚” adds Michael Fletcher sales director for Ruckus Wireless sub-Saharan Africa. ‚”We are likely to continue to see more industry players embracing this transformation globally, and hopefully locally as well as operators look for solutions to cater for their growing customer base.‚”

Beating the Backhaul Dilemma

‚”A major challenge with small cell deployments is how to reliably backhaul traffic from potentially thousands of small cell nodes without breaking the bank,‚” said Robert Joyce, chief radio engineer at Telef√≥nica UK.‚”

Telefónica UK effectively eliminates this problem by meshing traffic over highly reliable 5GHz Wi-Fi mesh links between nodes using Ruckus Smart Mesh technology. Smart Mesh uses advanced self-organising network (SON) principles with Ruckus-patented adaptive antenna arrays (BeamFlex) and predictive channel management techniques (ChannelFly). Combined these technologies create highly resilient, high-speed Wi-Fi mesh backbone links between nodes that automatically adapt to changes in environmental conditions.

Thought by many to not be possible, Smart Mesh has demonstrated to deliver reliable backhaul for licensed cellular and unlicensed Wi-Fi traffic in both line of sight and non-line of site environments.

‚”Ruckus Smart Mesh technology is proving to offer a cost-effective, reliable and flexible alternative to conventional approaches,‚” said Joyce. ‚”With Smart Mesh, we are running fiber to just one of every five nodes. This has proven to be a huge benefit in reducing capital and operational expense with the added bonus of reducing the time to market.‚”

Big Improvements with Small Cells

Small cells represent a new architectural approach for injecting much needed capacity into service provider networks. Small cells are miniature base stations that combine licensed and unlicensed radio technology with wireless backhaul to deliver lower powered wireless signals much closer to mobile users. This results in better signal coverage, improved voice quality and higher data performance.

Small cells enable operators to provide a premium quality mobile signal where it was never previously economic, such as indoor environments and remote outdoor locations. They also enable operators to meet the burgeoning demand for mobile data, by multiplying the data capacity of the macro network at a fraction of the cost.

With the Ruckus SmartCell system, mobile operators gain a capacity boost from LTE small cells, cutting costs and complexity by co-locating and combining them with Wi-Fi access points, sharing site-lease agreements and backhaul. The integration of Wi-Fi and LTE small cells within the cellular core also helps operators optimize network utilization across the radio access network, providing a further improvement in performance, and creating a seamless experience for subscribers.

* Follow Gadget on Twitter on @gadgetza

Continue Reading

Trending

Copyright © 2020 World Wide Worx