Connect with us

Featured

How big storage will change business in 2017

Published

on

In this day and age, a company’s data is its business. MARK BREGMAN, SVP and CTO at NetApp gives six predictions on what businesses and users can expect from the ever-evolving data space in the coming year.

The explosion of data in today’s digital economy has resulted in a fundamental shift from using data to run the business to recognising that data is the business. In an era where data is king, superior data management and storage in the hybrid cloud become paramount. NetApp gives six predictions on what businesses and users can expect from this ever-evolving space in the coming year.

  • Data is the new currency

These days, poor access to data can impact heavily on a company’s success. With data so valuable to success, it has become the new currency of the digital age and has the potential to reshape every facet of the enterprise, from business models to technology and user expectations. We’ve seen this in the emergence of game-changing digital businesses like Uber and Airbnb, which are built around the control of a network of resources.

To make things even more interesting, we continue to see new types of data that enterprises didn’t previously think about collecting. For example, whereas we used to store and share only critical transactional data, we now store mass amounts of ancillary data surrounding transactions for deep analysis. This can include click stream data and even data about weather and other external factors, which can significantly enhance market insight for businesses.

  • New IT models are taking hold

The focus on data requires a universe of services that can integrate and work together to solve critical problems of all types and simplify delivery. This will require the support of platforms and an ecosystem of providers and developers that enables them. In this context, the platform model carries intrinsic value in its ability to integrate and simplify the delivery of services. A good example of this is Amazon Web Services, which continues to evolve into a richer and richer set of services all the time. Platforms create a virtuous cycle, as does a good flea market: people go there to buy because that’s where people are selling; sellers go there to sell because that’s where the buyers are.

As access to critical skills is becoming more challenging, broad-based platforms allow a more fluid flow of talent as expectations from both employees and employers shift. People with specialised skills are attracted to projects they find interesting and the ubiquity of common platforms and tools makes it easier to engage their interests.

  • The cloud as catalyst and accelerator

More and more organisations have been deploying cloud technologies to support their data requirements. Customers who are focused on optimising performance while reducing costs are finding that usage-based consumption models meet all their needs. The ready availability of cloud-based services provides easy access to the infrastructure needed to support innovation because it has dramatically lowered barriers to entry: with a credit card and an AWS account, new projects can be set up in a day and operate on a pay-as-you-go basis.

An example of this is CloudSync, which was built by six engineers in six months with no capex infrastructure. New usage-based consumption models, based on Platform as a Service combined with new scale, compliance and data protection offerings, are making cloud infrastructure more essential for businesses of all sizes.

  • New technologies are becoming the standard 

All of these business drivers will ultimately lead to the dominance of new technologies, particularly in the form of new application paradigms, which will reduce friction in business change and movement of talent. We’ve seen this emerge in the form of today’s DevOps movement, where compositional programming based on micro services and mashups, open source have taken hold. Currently, these are considered niche solutions, but as the value of data becomes more critical to business and the pace of innovation becomes an even more crucial competitive weapon, they will quickly move into the mainstream. Historic parallels include the emergence of Ethernet as a networking standard and Linux as a standard operating system.

  • A wider, dynamic range of storage and data management technologies evolves

As IT architectures evolve to accommodate new cloud infrastructure and new applications, a wider, dynamic range of storage technologies will also emerge. We’ve witnessed how flash storage has quickly gained in popularity offering incredible efficiency and performance. Likewise, hyper-converged infrastructure (HCI) is one of the new IT architectures that addresses the critical demand for simplicity and reduces the need for administrative resources to manage storage. While the first wave of HCI solutions have done that well, they have not addressed additional requirements for flexibility and scalability. Building web-scale infrastructure will call for the flexibility to adapt the ratio of compute to storage according to the need, enable the upgrade of compute and storage separately, and scale easily and cost effectively.

Expect the next wave of HCI solutions to leverage what we’ve learned from converged infrastructure to deliver web-scale converged infrastructure that meets these requirements. We also see the build out of higher bandwidth networks to manage the movement of large volumes of data. On the horizon, storage technologies such as archive class storage and massive persistent memory are next in line for adoption. The rapid development of easy and accessible data management services will allow for easier deployment of these emerging technologies.

  • Consumeriation of IT persists

Perhaps most profound is the change in user expectations of iPhone-like simplicity and self-management and the integration of applications and services. These expectations are affecting development across all technologies in storage and data management. User experiences with mobile app simplicity in a wide variety of forms has raised expectations for the usability and simplicity of data management software. From a business standpoint, companies are demanding this simplicity because it will enable them to use less expensive resources to manage their data while giving them greater access and use of their data as a critical business asset.

Featured

Why your first self-driving car ride will be in a robotaxi

Autonomous driving will take longer than we expect, and involve less ownership than the industry would like, writes Intel’s AMNON SHASHUA

Published

on

As we all watch automakers and autonomous tech companies team up in various alliances, it’s natural to wonder about their significance and what the future will bring. Are we realizing that autonomous driving technology and its acceptance by society could take longer than expected? Is the cost of investing in such technology proving more than any single organization can sustain? Are these alliances driven by a need for regulation that will be accepted by governments and the public or for developing standards on which manufacturers can agree?

The answers are likely a bit of each, which makes it a timely opportunity to review the big picture and share our view of where Intel and Mobileye stand in this landscape.

Three Aspects to Auto-Tech-AI

There are three aspects to automotive-technology-artificial intelligence (auto-tech-AI) that are unfolding:

  1. Advanced driver-assistance systems (ADAS)
  2. Robotaxi ride-hailing as the future of mobility-as-a-service (MaaS)
  3. Series-production passenger car autonomy

With ADAS technologies, the driver remains in control while the system intervenes when necessary to prevent accidents. This is especially important as distracted driving grows unabated. Known as Levels 0-2 as defined by the Society of Automotive Engineers (SAE), ADAS promises to reduce the probability of an accident to infinitesimal levels. This critical phase of auto-tech-AI is well underway, with today’s penetration around 22%, a number expected to climb sharply to 75% by 2025.1

Meanwhile, the autonomous driving aspect of auto-tech-AI is coming in two phases: robotaxi MaaS and series-production passenger car autonomy. What has changed in the mindset of many companies, including much of the auto industry, is the realization that those two phases cannot proceed in parallel.

Series-production passenger car autonomy (SAE Levels 4-5) must wait until the robotaxi industry deploys and matures. This is due to three factors: cost, regulation and geographic scale. Getting all factors optimized simultaneously has proven too difficult to achieve in a single leap, and it is why many in the industry are contemplating the best path to achieve volume production. Many industry leaders are realizing it is possible to stagger the challenges if the deployment of fully autonomous vehicles (AVs) aims first at the robotaxi opportunity.

Cost: The cost of a self-driving system (SDS) with its cameras, radars, lidars and high-performance computing is in the tens of thousands of dollars and will remain so for the foreseeable future. This cost level is acceptable for a driverless ride-hailing service, but is simply too expensive for series-production passenger cars. The cost of SDS should be no more than a few thousand dollars – an order of magnitude lower than today’s costs – before such capability can find its way to series-production passenger cars.

Regulation: Regulation is an area that receives too little attention. Companies deep in the making of SDSs know that it is the stickiest issue. Beside the fact that laws for granting a license to drive are geared toward human drivers, there is the serious issue of how to balance safety and usefulness in a manner that is acceptable to society.

It will be easier to develop laws and regulations governing a fleet of robotaxis than for privately-owned vehicles. A fleet operator will receive a limited license per use case and per geographic region and will be subject to extensive reporting and back-office remote operation. In contrast, licensing such cars to private citizens will require a complete overhaul of the complex laws and regulations that currently govern vehicles and drivers.

The auto industry is gradually realising that autonomy must wait until regulation and technology reach equilibrium, and the best place to get this done is through the robotaxi phase.

Scale: The third factor, geographic scale, is mostly a challenge of creating high-definition maps with great detail and accuracy, and of keeping those maps continuously updated. The geographic scale is crucial for series-production driverless cars because they must necessarily operate “everywhere” to fulfil the promise of the self-driving revolution. Robotaxis can be confined to geofenced areas, which makes it possible to postpone the issue of scale until the maturity of the robotaxi industry.

When the factors of cost, regulation and scale are taken together, it is understandable why series-production passenger cars will not become possible until after the robotaxi phase.

As is increasingly apparent, the auto industry is gravitating towards greater emphasis on their Level 2 offerings. Enhanced ADAS – with drivers still in charge of the vehicle at all times – helps achieve many of the expected safety benefits of AVs without bumping into the regulatory, cost and scale challenges.

At the same time, automakers are solving for the regulatory, cost and scale challenges by embracing the emerging robotaxi MaaS industry. Once MaaS via robotaxi achieves traction and maturity, automakers will be ready for the next (and most transformative) phase of passenger car autonomy.

The Strategy for Autonomy

With all of this in mind, Intel and Mobileye are focused on the most efficient path to reach passenger car autonomy. It requires long-term planning, and for those who can sustain the large investments ahead, the rewards will be great. Our path forward relies on four focus areas:

  • Continue at the forefront of ADAS development. Beyond the fact that ADAS is the core of life-saving technology, it allows us to validate the technological building blocks of autonomous vehicles via tens of new production programs a year with automakers that submit our technology to the most stringent safety testing. Our ADAS programs – more than 34 million vehicles on roads today – provide the financial “fuel” to sustain autonomous development activity for the long run.
  • Design an SDS with a backbone of a camera-centric configuration. Building a robust system that can drive solely based on cameras allows us to pinpoint the critical safety segments for which we truly need redundancy from radars and lidars. This effort to avoid unnecessary over-engineering or “sensor overload” is key to keeping the cost low.
  • Build on our Road Experience Management (REM)™ crowdsourced automatic high-definition map-making to address the scale issue. Through existing contracts with automakers, we at Mobileye expect to have more than 25 million cars sending road data by 2022.
  • Tackle the regulatory issue through our Responsibility-Sensitive Safety (RSS) formal model of safe driving, which balances the usefulness and agility of the robotic driver with a safety model that complies with societal norms of careful driving.

At Intel and Mobileye, we are all-in on the global robotaxi opportunity. We are developing technology for the entire robotaxi experience – from hailing the ride on your phone, through powering the vehicle and monitoring the fleet. Our hands-on approach with as much of the process as possible enables us to maximize learnings from the robotaxi phase and be ready with the right solutions for automakers when the time is right for series-production passenger cars.

On the way, we will help our partners deliver on the life-saving safety revolution of ADAS. We are convinced this will be a powerful and historic example of the greatest value being realized on the journey.

Professor Amnon Shashua is senior vice president at Intel Corporation and president and chief executive officer of Mobileye, an Intel company.

1Wolfe Research 2019.

Continue Reading

Featured

Sea of Solitude represents mental health issues through gaming

It’s a game that provides a tasteful visual representation of mental health issues. BRYAN TURNER dives into the Sea of Solitude.

Published

on

Disclaimer: This review is based on four hours of gameplay.

Sea of Solitude, the latest adventure game by Jo-Mei Games and EA Games, takes a sobering look at loneliness. It represents this loneliness visually, using light and dark environmental changes, as well as creatures players must encounter. The main character, Kay, must make it through the sea without finding herself trapped in a sea of loneliness. She meets fantastical creatures along her journey, and she must help them solve their challenges while keeping herself in a sane environment.

The game is systematic in the way it represents its important aspects. It starts with a striking visual art style and a soft storyline, which gives characters a chance to absorb the beauty of the game. As one gets a hang of the controls and used to the art style, the story kicks it up a few notches to reveal the harrowing backstories of the creatures that reside in the sea Kay must travel.

In particular, it features a creature that keeps flying away from Kay. This was frustrating because the previous chapter of the game presents a backstory for the creature that was not only devastating to the main character, but also to the player. Once Kay meets this creature, players must be ready to cry. It’s a brilliantly crafted story and hats off to Jo-Mei Games for being great storytellers.

Cornelia Geppert, CEO of Jo-Mei Games, told EA: “Sea of Solitude centres on the essence of loneliness and tugs on the heartstrings of its players by mirroring their own reality. It’s by far the most artistic and personal project I’ve ever created, written during a very emotional time in my life. Designing characters based on emotions was a deeply personal achievement for our team and we’re so excited for players to soon experience Kay’s powerful story of self-discovery and healing.”

Generally, I steer clear of games that are metaphors about mental health issues because they tend to be crass in how they address mental health. Sea of Solitude is quite different because of its level of relatability. Other games about mental health tend to be about a specific disorder that not many people experience, while loneliness is something that so many of us experience. Additionally, the representation of how loneliness affects Kay in the real world is sharp but tasteful. The combination of relatability and respectful representation is what makes the game’s story so brilliant.

Another great aspect of this game is the music scoring. It uses sound and the absence of sound very carefully to invoke the right feelings expected from players. The game wouldn’t be as good with the sound off and subtitles on, so future players are recommended to turn up the volume or put on headphones.

The game is long for an indie game, at around three or four hours of gameplay until the end is reached. Several sources say there is a hidden ending, so players can look out for that in a second playthrough.

The game’s story isn’t perfect, though. The eventual sameness of creature encounters is a little disappointing. This may be down to the expectation of being extremely devastated by all the stories of the creatures, especially when one is less than devastated by the subsequent stories. One of the most affecting creature stories was also presented at the beginning of the game, which set the bar very high for the rest of the creatures.

One creature, in particular, tries very hard to have the greatest emotional impact, but this comes across as blunt and dampens the meaning of what it was supposed to represent.

While I didn’t mind sharp representation, the perception of themes like bullying, estrangement, and suicidal thoughts may vary in appropriateness from player to player. Prospective players with existing painful mental health issues should consult gameplay videos, like the one below, before purchasing the game, to gauge appropriateness.

Overall, the game is incredible at connecting with what it is to be human and what it means to be lonely. Dealing with issues as physical creatures is a great touch, as the main character tends to resolve the problems of the creature by understanding what the problems mean.

Continue Reading

Trending

Copyright © 2019 World Wide Worx