Connect with us

Featured

Can quantum cryptography save the world?

Published

on

Quantum cryptography can ensure an ultra-secure future for the financial sector despite the evolving threats they face, writes RONALD RAVEL, Director B2B South Africa, Toshiba South Africa

With an increasingly connected world spurring on the perpetual rise of the Internet of Things (IoT), data is firmly establishing itself as the dominant fuel within many organisations, being central to the way they work. This data proliferation is taking place at an exponential rate – so much so that Cisco predicts a huge 14.1 zettabytes of data will be present in the cloud in 2020, compared to only 3.9 zettabytes in 2015.

With this shift taking place, encryption is an increasingly well-regarded protection tool in cybersecurity: over 80 per cent of mobile device data is encrypted – a significantly greater percentage than corporate data, despite its generally more revealing content. All data though, whether in the cloud or on devices, is a target for potential hackers. As the financial industry handles a significant amount of highly sensitive and valuable data, including Personally Identifiable Information (PII) of customers, focused attacks are to be expected.

Recent research found that the average cost of a data breach in South Africa is R32,36-million, a 12% increase since 2016. According to the study, these data breaches cost companies on average R1 632 ($124) per lost or stolen record.

The study shows how quickly an organisation can contain data breach incidents has a direct impact on financial consequences. The cost of a data breach was nearly R5-million lower on average for organisations that were able to contain a data breach in less than 30 days compared to those that look longer than 30 days.

As the foundations of computing begin to change from maths to physics with the introduction of quantum computing, so must the financial industry evolve the way it protects its data to ensure optimum and future-proofed security. Global Industry Analysts forecasts quantum computing’s global market to reach $2 billion by 2024, and it will pay dividends to keep abreast of its evolution. Quantum cryptography is emerging from this ongoing development as a strong protection method, necessary to combat ever-increasing security threats.

The building blocks of quantum cryptography

Quantum cryptography produces a message unreadable to all except its explicit recipient, due to the fundamental physics law of observation: to observe something is to change it. This specific type of quantum computing is known as Quantum Key Distribution (QKD), as whoever is receiving the message will still need a transmitted ‘key’ to decode its contents. Encryption is brought into a new era of online security by precisely how QKD communicates: keys are transmitted as photons, and usually light particles. If third-party interception is detected, the key instantaneously transforms state, rendering its contents indecipherable and, thus, useless. This change of state also indicates to the recipient that the transmission’s contents have been compromised. Until interference, QKD particles are able to exist simultaneously in more than one place and state, only having to select a behaviour upon coming into contact with something else – such as a hacker.

Toshiba works at the forefront of quantum cryptography, recently making a breakthrough at its Cambridge Research Laboratory by creating the world’s fastest QKD device. Approximately seven times faster than Toshiba’s previous record speed of 1.9Mbps, a speed of 13.7Mbps has now been achieved. Such a development brings the wider, practical utilisation of quantum technology one step closer.

Quantum cryptography’s role in shaping the security of the financial sector

Cost presently restricts the mainstream use of quantum cryptography, with it likely to be some while before the technology is widely-utilised. Now, however, is the best time to prepare in order to stay ahead in the race between hackers and cryptographers, both of whom stand to benefit from the new technology. A significant threat to the integrity of financial data in the cloud is the technique of harvest and decrypt. Already being deployed by cybercriminals, this technique sees sensitive files, which could include information such as account holders’ addresses and names, scraped and stored by malicious parties until they have the capability in the future to decipher the contents with quantum computers (the power of which vastly outstrips that of a classic computer). Even currently secure data is, therefore, already vulnerable to the hackers of the future. Vigilance now, with the security tools presently available, is crucial – it avoids attracting a cybercriminal’s attention as either an immediate data breach target or future harvest victim.

The financial industry must also recognise that leaked data doesn’t only cost in terms of the danger of personal and business critical data being readily obtainable online. Reputations will also be damaged, possibly irreparably, and the monetary cost will be high.

Quantum cryptography has the ability to usher in a new age of ‘unhackable’ online communication – as long as the finance industry ensures that education and awareness also remain high on the agenda. Support for IT decision makers will be vital in maintaining robust data security now and in the future, ensuring a mindset agile enough to update methods when the time comes. Cybercriminals often lead the way with new and inventive hacking methods – with quantum computing, financial organisations need to move to a preventative rather than reactive IT security infrastructure, or by the time they address any attack it will be too late. By understanding how quantum cryptography can work to fill the gaps in online defences, such as with the protection of abandoned historic data, the financial sector will be well-placed to stay one step ahead of any complex threats in the future.

Featured

Prepare your cam to capture the Blood Moon

On 27 July 2018, South Africans can witness a total lunar eclipse, as the earth’s shadow completely covers the moon.

Published

on

Also known as a blood or red moon, a total lunar eclipse is the most dramatic of all lunar eclipses and presents an exciting photographic opportunity for any aspiring photographer or would-be astronomers.

“A lunar eclipse is a rare cosmic sight. For centuries these events have inspired wonder, interest and sometimes fear amongst observers. Of course, if you are lucky to be around when one occurs, you would want to capture it all on camera,” says Dana Eitzen, Corporate and Marketing Communications Executive at Canon South Africa.

Canon ambassador and acclaimed landscape photographer David Noton has provided his top tips to keep in mind when photographing this occasion.   In South Africa, the eclipse will be visible from about 19h14 on Friday, 27 July until 01h28 on the Saturday morning. The lunar eclipse will see the light from the sun blocked by the earth as it passes in front of the moon. The moon will turn red because of an effect known as Rayleigh Scattering, where bands of green and violet light become filtered through the atmosphere.

A partial eclipse will begin at 20h24 when the moon will start to turn red. The total eclipse begins at about 21h30 when the moon is completely red. The eclipse reaches its maximum at 22h21 when the moon is closest to the centre of the shadow.

David Noton advises:

  1. Download the right apps to be in-the-know

The sun’s position in the sky at any given time of day varies massively with latitude and season. That is not the case with the moon as its passage through the heavens is governed by its complex elliptical orbit of the earth. That orbit results in monthly, rather than seasonal variations, as the moon moves through its lunar cycle. The result is big differences in the timing of its appearance and its trajectory through the sky. Luckily, we no longer need to rely on weight tables to consult the behaviour of the moon, we can simply download an app on to our phone. The Photographer’s Ephemeris is useful for giving moonrise and moonset times, bearings and phases; while the Photopills app gives comprehensive information on the position of the moon in our sky.  Armed with these two apps, I’m planning to shoot the Blood Moon rising in Dorset, England. I’m aiming to capture the moon within the first fifteen minutes of moonrise so I can catch it low in the sky and juxtapose it against an object on the horizon line for scale – this could be as simple as a tree on a hill.

 

  1. Invest in a lens with optimal zoom  

On the 27th July, one of the key challenges we’ll face is shooting the moon large in the frame so we can see every crater on the asteroid pockmarked surface. It’s a task normally reserved for astronomers with super powerful telescopes, but if you’ve got a long telephoto lens on a full frame DSLR with around 600 mm of focal length, it can be done, depending on the composition. I will be using the Canon EOS 5D Mark IV with an EF 200-400mm f/4L IS USM Ext. 1.4 x lens.

  1. Use a tripod to capture the intimate details

As you frame up your shot, one thing will become immediately apparent; lunar tracking is incredibly challenging as the moon moves through the sky surprisingly quickly. As you’ll be using a long lens for this shoot, it’s important to invest in a sturdy tripod to help capture the best possible image. Although it will be tempting to take the shot by hand, it’s important to remember that your subject is over 384,000km away from you and even with a high shutter speed, the slightest of movements will become exaggerated.

  1. Integrate the moon into your landscape

Whilst images of the moon large in the frame can be beautifully detailed, they are essentially astronomical in their appeal. Personally, I’m far more drawn to using the lunar allure as an element in my landscapes, or using the moonlight as a light source. The latter is difficult, as the amount of light the moon reflects is tiny, whilst the lunar surface is so bright by comparison. Up to now, night photography meant long, long exposures but with cameras such as the Canon EOS-1D X Mark II and the Canon EOS 5D Mark IV now capable of astonishing low light performance, a whole new nocturnal world of opportunities has been opened to photographers.

  1. Master the shutter speed for your subject 

The most evocative and genuine use of the moon in landscape portraits results from situations when the light on the moon balances with the twilight in the surrounding sky. Such images have a subtle appeal, mood and believability.  By definition, any scene incorporating a medium or wide-angle view is going to render the moon as a tiny pin prick of light, but its presence will still be felt. Our eyes naturally gravitate to it, however insignificant it may seem. Of course, the issue of shutter speed is always there; too slow an exposure and all we’ll see is an unsightly lunar streak, even with a wide-angle lens.

 

On a clear night, mastering the shutter speed of your camera is integral to capturing the moon – exposing at 1/250 sec @ f8 ISO 100 (depending on focal length) is what you’ll need to stop the motion from blurring and if you are to get the technique right, with the high quality of cameras such as the Canon EOS 5DS R, you might even be able to see the twelve cameras that were left up there by NASA in the 60’s!

Continue Reading

Featured

How Africa can embrace AI

Currently, no African country is among the top 10 countries expected to benefit most from AI and automation. But, the continent has the potential to catch up with the rest of world if we act fast, says ZOAIB HOOSEN, Microsoft Managing Director.

Published

on

To play catch up, we must take advantage of our best and most powerful resource – our human capital. According to a report by the World Economic Forum (WEF), more than 60 percent of the population in sub-Saharan Africa is under the age of 25.

These are the people who are poised to create a future where humans and AI can work together for the good of society. In fact, the most recent WEF Global Shapers survey found that almost 80 percent of youth believe technology like AI is creating jobs rather than destroying them.

Staying ahead of the trends to stay employed

AI developments are expected to impact existing jobs, as AI can replicate certain activities at greater speed and scale. In some areas, AI could learn faster than humans, if not yet as deeply.

According to Gartner, while AI will improve the productivity of many jobs and create millions more new positions, it could impact many others. The simpler and less creative the job, the earlier, a bot for example, could replace it.

It’s important to stay ahead of the trends and find opportunities to expand our knowledge and skills while learning how to work more closely and symbiotically with technology.

Another global study by Accenture, found that the adoption of AI will create several new job categories requiring important and yet surprising skills. These include trainers, who are tasked with teaching AI systems how to perform; explainers, who bridge the gap between technologist and business leader; and sustainers, who ensure that AI systems are operating as designed.

It’s clear that successfully integrating human intelligence with AI, so they co-exist in a two-way learning relationship, will become more critical than ever.

Combining STEM with the arts

Young people have a leg up on those already in the working world because they can easily develop the necessary skills for these new roles. It’s therefore essential that our education system constantly evolves to equip youth with the right skills and way of thinking to be successful in jobs that may not even exist yet.

As the division of tasks between man and machine changes, we must re-evaluate the type of knowledge and skills imparted to future generations.

For example, technical skills will be required to design and implement AI systems, but interpersonal skills, creativity and emotional intelligence will also become crucial in giving humans an advantage over machines.

“At one level, AI will require that even more people specialise in digital skills and data science. But skilling-up for an AI-powered world involves more than science, technology, engineering and math. As computers behave more like humans, the social sciences and humanities will become even more important. Languages, art, history, economics, ethics, philosophy, psychology and human development courses can teach critical, philosophical and ethics-based skills that will be instrumental in the development and management of AI solutions.” This is according to Microsoft president, Brad Smith, and EVP of AI and research, Harry Shum, who recently authored the book “The Future Computed”, which primarily deals with AI and its role in society.

Interestingly, institutions like Stanford University are already implementing this forward-thinking approach. The university offers a programme called CS+X, which integrates its computer science degree with humanities degrees, resulting in a Bachelor of Arts and Science qualification.

Revisiting laws and regulation

For this type of evolution to happen, the onus is on policy makers to revisit current laws and even bring in new regulations. Policy makers need to identify the groups most at risk of losing their jobs and create strategies to reintegrate them into the economy.

Simultaneously, though AI could be hugely beneficial in areas such as curbing poor access to healthcare and improving diagnoses for example, physicians may avoid using this technology for fear of malpractice. To avoid this, we need regulation that closes the gap between the pace of technological change and that of regulatory response. It will also become essential to develop a code of ethics for this new ecosystem.

Preparing for the future

With the recent convergence of a transformative set of technologies, economies are entering a period in which AI has the potential overcome physical limitations and open up new sources of value and growth.

To avoid missing out on this opportunity, policy makers and business leaders must prepare for, and work toward, a future with AI. We must do so not with the idea that AI is simply another productivity enhancer. Rather, we must see AI as the tool that can transform our thinking about how growth is created.

It comes down to a choice of our people and economies being part of the technological disruption, or being left behind.

Continue Reading

Trending

Copyright © 2018 World Wide Worx