Connect with us

Featured

Africa data flood set to shake off cloud lag

Global cloud traffic is expected to rise almost fourfold, up from 3.9 zettabytes (ZB) per year in 2015 to 14.1 ZB per year by 2020, according to the recently released Cisco Global Cloud Index (2015-2020).

In Middle East and Africa, data center traffic will grow a little more than fourfold in the next four years.

This rapid growth of cloud traffic is attributed to increased migration to cloud architectures and their ability to scale quickly and support more workloads than traditional data centers.

With greater virtualization, cloud operators are also able to achieve greater operational efficiencies while flexibly delivering a growing variety of services to businesses and consumers with optimal performance. To better understand data center growth, new analysis on application workloads was developed for this year’s report.

The following business and consumer projections were revealed:

Business:

•          By 2020, business workloads will account for 72 percent (344.5 million) of total data center workloads, compared to 79 percent (142.3 million) in 2015 (2.4-fold growth).

•          By 2020, compute workloads will account for 29 percent of total business workloads, compared to 28 percent in 2015.

•          By 2020, collaboration workloads will account for 24 percent of total business workloads, compared to 25 percent in 2015.

•          By 2020, database/analytics/Internet of Things (IoT) workloads will account for 22 percent of total business workloads, compared to 20 percent in 2015.

Consumer:

•          By 2020, consumer workloads will account for 28 percent (134.3 million) of total data center workloads, compared to 21 percent (38.6 million) in 2015 (3.5-fold growth).

•          By 2020, video streaming workloads will account for 34 percent of total consumer workloads, compared to 29 percent in 2015.

•          By 2020, social networking workloads will account for 24 percent of total consumer workloads, compared to 20 percent in 2015.

By 2020, search workloads will account for 15 percent of total consumer workloads, compared to 17 percent in 2015

“The IT industry has taken cloud computing from an emerging technology to an essential scalable and flexible networking solution. With large global cloud deployments, operators are optimizing their data center strategies to meet the growing needs of businesses and consumers,” said Andy MacDonald, Vice President Global Service Providers; Middle East, Africa and Russia, Cisco. “In the six years of this study, cloud computing has advanced from an emerging technology to an essential scalable and flexible part of architecture for service providers.

For the first time, Cisco also quantified and analyzed the impact of hyperscale data centers. These data centers are expected to grow from 259 in 2015 to 485 by 2020. Hyperscale[1] data center traffic is projected to quintuple over the next five years. These infrastructures will account for 47 percent of total data center installed servers and support 53 percent of all data center traffic by 2020.

A key infrastructure trend is transforming hyperscale (and other) data centers. Software-defined networking (SDN) and network functions virtualization (NFV) are helping to flatten data center architectures and streamline traffic flows. Over the next five years, nearly 60 percent of global hyperscale data centers are expected to deploy SDN/NFV solutions. By 2020, 44 percent of traffic within data centers will be supported by SDN/NFV platforms (up from 23 percent in 2015) as operators strive for greater efficiencies.

Middle East and Africa Global Cloud Index Forecasted Highlights and Projections:

1.      Data Center Traffic Highlights

  • In Middle East and Africa, data center traffic will reach 328 Exabytes per year (27 Exabytes per month) by 2019, up from 82 Exabytes per year (6.8 Exabytes per month) in 2014.
  • In Middle East and Africa, data center traffic will grow 4.0-fold by 2019, at a CAGR of 32% from 2014 to 2019.
  • In Middle East and Africa, data center traffic grew 40% in 2014, up from 59 Exabytes per year (4.9 Exabytes per month) in 2013.
  • In Middle East and Africa, 59.9% of data center traffic will remain within the data center by 2019, compared to 74.0% in 2014.
  • In Middle East and Africa, 33.0% of data center traffic will travel to end users by 2019, compared to 18.9% in 2014.
  • In Middle East and Africa, 7.1% of data center traffic will travel between data centers by 2019, compared to 7.1% in 2014.
  • In Middle East and Africa, consumer data center traffic will represent 65% of total data center traffic by 2019, compared to 32% in 2014.

2.      Cloud Traffic Highlights

  • In Middle East and Africa, cloud data center traffic will represent 86% of total data center traffic by 2019, compared to 61% in 2014.
  • In Middle East and Africa, cloud data center traffic will reach 280 Exabytes per year (23 Exabytes per month) by 2019, up from 50 Exabytes per year (4.2 Exabytes per month) in 2014.
  • In Middle East and Africa, cloud data center traffic will grow 5.6-fold by 2019, at a CAGR of 41% from 2014 to 2019.
  • In Middle East and Africa, cloud data center traffic grew 61% in 2014, up from 31 Exabytes per year (2.6 Exabytes per month) in 2013.
  • In Middle East and Africa, consumer will represent 61% of cloud data center traffic by 2019, compared to 30% in 2014.

3.      Traditional Traffic Highlights

  • In Middle East and Africa, traditional data center traffic will represent 14% of total data center traffic by 2019, compared to 39% in 2014.
  • In Middle East and Africa, traditional data center traffic will reach 47 Exabytes per year (4.0 Exabytes per month) by 2019, up from 31 Exabytes per year (2.6 Exabytes per month) in 2014.
  • In Middle East and Africa, traditional data center traffic will grow 1.5-fold by 2019, at a CAGR of 9% from 2014 to 2019.
  • In Middle East and Africa, traditional data center traffic grew 16% in 2014, up from 27 Exabytes per year (2.3 Exabytes per month) in 2013.
  • In Middle East and Africa, consumer will represent 89% of traditional data center traffic by 2019, compared to 35% in 2014.

Featured

Now IBM’s Watson joins IoT revolution in agriculture

Global expansion of the Watson Decision Platform taps into AI, weather and IoT data to boost production

IBM has announced the global expansion of Watson Decision Platform for Agriculture, with AI technology tailored for new crops and specific regions to help feed a growing population. For the first time, IBM is providing a global agriculture solution that combines predictive technology with data from The Weather Company, an IBM Business, and IoT data to help give farmers around the world greater insights about planning, ploughing, planting, spraying and harvesting.

By 2050, the world will need to feed two billion more people without an increase in arable land [1]. IBM is combining power weather data – including historical, current and forecast data and weather prediction models from The Weather Company – with crop models to help improve yield forecast accuracy, generate value, and increase both farm production and profitability.

Roric Paulman, owner/operator of Paulman Farms in Southwest Nebraska, said: “As a farmer, the wild card is always weather. IBM overlays weather details with my own data and historical information to help me apply, verify, and make decisions. For example, our farm is in a highly restricted water basin, so the ability to better anticipate rain not only saves me money but also helps me save precious natural resources.”

New crop models include corn, wheat, soy, cotton, sorghum, barley, sugar cane and potato, with more coming soon. These models will now be available in the Africa, U.S. Canada, Mexico, and Brazil, as well as new markets across Europe and Australia.

Kristen Lauria, general manager of Watson Media and Weather Solutions at IBM, said: “These days farmers don’t just farm food, they also cultivate data – from drones flying over fields to smart irrigation systems, and IoT sensors affixed to combines, seeders, sprayers and other equipment. Most of the time, this data is left on the vine — never analysed or used to derive insights. Watson Decision Platform for Agriculture aims to change that by offering tools and solutions to help growers make more informed decisions about their crops.” 

The average farm generates an estimated 500,000 data points per day, which will grow to 4 million data points by 2036 [2]. Applying AI and analysis to aggregated field, machine and environmental data can help improve shared insights between growers and enterprises across the agriculture ecosystem. With a better view of the fields, growers can see what’s working on certain farms and share best practices with other farmers. The platform assesses data in an electronic field record to identify and communicate crop management patterns and insights. Enterprise businesses such as food companies, grain processors, or produce distributors can then work with farmers to leverage those insights. It helps track crop yield as well as the environmental, weather and plant biologic conditions that go into a good or bad yield, such as irrigation management, pest and disease risk analysis and cohort analysis for comparing similar subsets of fields.

The result isn’t just more productive farmers. Watson Decision Platform for Agriculture could help a livestock company eliminate a certain mold or fungus from feed supply grains or help identify the best crop irrigation practices for farmers to use in drought-stricken areas like California. It could help deliver the perfect French fry for a fast food chain that needs longer – not fatter – potatoes from its network of growers. Or it could help a beer distributor produce a more affordable premium beer by growing higher quality barley that meets the standard required to become malting barley.

Watson Decision Platform for Agriculture is built on IBM PAIRS Geoscope from IBM Research, which quickly processes massive, complex geospatial and time-based datasets collected by satellites, drones, aerial flights, millions of IoT sensors and weather models. It crunches large, complex data and creates insights quickly and easily so farmers and food companies can focus on growing crops for global communities.

IBM and The Weather Company help the agriculture industry find value in weather insights. IBM Research collaborates with start up Hello Tractor to integrate The Weather Company data, remote sensing data (e.g., satellite), and IoT data from tractors. IBM also works with crop nutrition leader Yara to include hyperlocal weather forecasts in its digital platform for real-time recommendations, tailored to specific fields or crops. IBM acquired The Weather Company in 2016 and has since been helping clients better understand and mitigate the cost of weather on their businesses. The global expansion of Watson Decision Platform for Agriculture is the latest innovation in IBM’s efforts to make weather a more predictable business consideration. Also just announced, Weather Signals is a new AI-based tool that merges The Weather Company data with a company’s own operations data to reveal how minor fluctuations in weather affects business.

The combination of rich weather forecast data from The Weather Company and IBM’s AI and Cloud technologies is designed to provide a unique capability, which is being leveraged by agriculture, energy and utility companies, airlines, retailers and many others to make informed business decisions.

[1] The UN Department of Economic and Social Affairs, “World Population Prospects: The 2017 Revision”

[2] Business Insider Intelligence, 2016 report: https://www.businessinsider.com/internet-of-things-smart-agriculture-2016-10


Continue Reading

Featured

What if Amazon used AI to take on factories?

By ANTONY BOURNE, IFS Global Industry Director for Manufacturing

Amazon recently announced record profits of $3.03bn, breaking its own record for the third consecutive time. However, Amazon appears to be at a crossroads as to where it heads next. Beyond pouring additional energy into Amazon Prime, many have wondered whether the company may decide to enter an entirely new sector such as manufacturing to drive future growth, after all, it seems a logical step for the company with its finger in so many pies.

At this point, it is unclear whether Amazon would truly ‘get its hands dirty’ by manufacturing its own products on a grand scale. But what if it did? It’s worth exploring this reality. What if Amazon did decide to move into manufacturing, a sector dominated by traditional firms and one that is yet to see an explosive tech rival enter? After all, many similarly positioned tech giants have stuck to providing data analytics services or consulting to these firms rather than genuinely engaging with and analysing manufacturing techniques directly.

If Amazon did factories

If Amazon decided to take a step into manufacturing, it is likely that they could use the Echo range as a template of what AI can achieve. In recent years,Amazon gained expertise on the way to designing its Echo home speaker range that features Alexa, an artificial intelligence and IoT-based digital assistant.Amazon could replicate a similar form with the deployment of AI and Industrial IoT (IIoT) to create an autonomously-run smart manufacturing plant. Such a plant could feature IIoT sensors to enable the machinery to be run remotely and self-aware; managing external inputs and outputs such as supply deliveries and the shipping of finished goods. Just-in-time logistics would remove the need for warehousing while other machines could be placed in charge of maintenance using AI and remote access. Through this, Amazon could radically reduce the need for human labour and interaction in manufacturing as the use of AI, IIoT and data analytics will leave only the human role for monitoring and strategic evaluation. Amazon has been using autonomous robots in their logistics and distribution centres since 2017. As demonstrated with the Echo range, this technology is available now, with the full capabilities of Blockchain and 5G soon to be realised and allowing an exponentially-increased amount of data to be received, processed and communicated.

Manufacturing with knowledge

Theorising what Amazon’s manufacturing debut would look like provides a stark learning opportunity for traditional manufacturers. After all, wheneverAmazon has entered the fray in other traditional industries such as retail and logistics, the sector has never remained the same again. The key takeaway for manufacturers is that now is the time to start leveraging the sort of technologies and approaches to data management that Amazon is already doing in its current operations. When thinking about how to implement AI and new technologies in existing environments, specific end-business goals and targets must be considered, or else the end result will fail to live up to the most optimistic of expectations. As with any target and goal, the more targeted your objectives, the more competitive and transformative your results. Once specific targets and deliverables have been considered, the resources and methods of implementation must also be considered. As Amazon did with early automation of their distribution and logistics centres, manufacturers need to implement change gradually and be focused on achieving small and incremental results that will generate wider momentum and the appetite to lead more expansive changes.

In implementing newer technologies, manufacturers need to bear in mind two fundamental aspects of implementation: software and hardware solutions. Enterprise Resource Planning (ERP) software, which is increasingly bolstered by AI, will enable manufacturers to leverage the data from connected IoT devices, sensors, and automated systems from the factory floor and the wider business. ERP software will be the key to making strategic decisions and executing routine operational tasks more efficiently. This will allow manufacturers to keep on top of trends and deliver real-time forecasting and spot any potential problems before they impact the wider business.

As for the hardware, stock management drones and sensor-embedded hardware will be the eyes through which manufacturers view the impact emerging technologies bring to their operations. Unlike manual stock audits and counting, drones with AI capabilities can monitor stock intelligently around production so that operations are not disrupted or halted. Manufacturers will be able to see what is working, what is going wrong, and where there is potential for further improvement and change.

Knowledge for manufacturing

For many traditional manufacturers, they may see Amazon as a looming threat, and smart-factory technologies such as AI and Robotic Process Automation (RPA) as a far off utopia. However, 2019 presents a perfect opportunity for manufacturers themselves to really determine how the tech giants and emerging technologies will affect the industry. Technologies such as AI and IoT are available today; and the full benefits of these technologies will only deepen as they are implemented alongside the maturing of other emerging technologies such as 5G and Blockchain in the next 3-5 years. Manufacturers need to analyse the needs which these technologies can address and produce a proper plan on how to gradually implement these technologies to address specific targets and deliverables. AI-based software and hardware solutions will fundamentally revolutionise manufacturing, yet for 2019, manufacturers just have to be willing to make the first steps in modernisation.

Continue Reading

Trending

Copyright © 2019 World Wide Worx