Connect with us

Cars

The shape of transport to 2030 and beyond

Published

on

As much of South Africa’s transportation is still road-based, the country needs to ready itself to take advantage of the Fourth Industrial Revolution – doing so, will play a transformative role in future-proofing transportation in the country.

Transportation remains one of the most important sectors for its potential influence on most other industries and growth in the economy. As much of South Africa’s transportation is still road-based, the country needs to ready itself to take advantage of the Fourth Industrial Revolution – doing so, connectivity, data and analytics, and autonomous vehicles will play a transformative role in future-proofing transportation in the country beyond 2030.

“Effective implementation of the National Infrastructure Plan (NIP) should be considered in earnest that will see selected major infrastructure projects fast-tracked to get the backlog moving, which could help with increasing capacity in transport industries and, as a direct result, influence positive growth in the economy,” says Vishaal Lutchman, transport and infrastructure divisional director, WSP ∣ Parsons Brinckerhoff Africa. “Though it shouldn’t be thought of in isolation, but rather viewed as a starting point to get the country’s infrastructure and supporting networks ready for the technological advances we are seeing globally, and better enable the 5.5% GDP growth the country is said to be able to achieve with relative ease.”

In reality, 2030 is a medium-term planning timeframe for major infrastructure projects. “While it’s important to have this planning and set targets in place, we also need a long-term vision that encapsulates how people will live, work and play beyond 2030. This will enable us to design what the future demand of transport networks will be. If we look at the pervasiveness of mobile devices and the uptake of the Internet in the country as well, then the adoption of key technologies becomes crucial to this vision and its implementation,” adds Lutchman.

“The National Infrastructure Plan (NIP) will see selected major infrastructure projects fast-tracked to get the backlog moving, which could immensely help with increasing capacity in transport industries and, as a direct result, influence positive growth in the economy,” says Vishaal Lutchman, transport and infrastructure divisional director, WSP ∣ Parsons Brinckerhoff Africa. “Though it shouldn’t be thought of in isolation and it should be viewed as a starting point to get the country’s infrastructure and supporting networks up to scratch – to better enable and facilitate the 5.5% GDP growth the country is said to be able to achieve.”

In reality, 2030 is a medium-term planning timeframe for major infrastructure projects. “While it’s great to have this planning and set targets in place, what we really need is a long-term vision that encapsulates how people will live, work and play beyond 2030 – and thereby design what the future demand of transport networks will be. Also, if we look at the pervasiveness of mobile devices and the uptake of the Internet in the country, then the adoption of key technologies becomes crucial to this vision and its implementation,” adds Lutchman.

Grant Fraser, Product and Marketing Director at MiX Telematics (Africa) agrees: “Today, we live in a digitally connected society and the expectations of individuals and business, alike, is to remain connected. However, managing this usually requires mobile connectivity in the form of Wi-Fi, GSM, GPS and wireless technologies.”

In fact, according to Riaan Graham, sales director at Ruckus Wireless, sub-Saharan Africa; “Mobility goes hand-in-hand with travel and transport and the proliferation of mobile devices is certainly driving the adoption of wireless technologies – particularly Wi-Fi connectivity – in transportation. Whether it’s an individual, or a company transporting people or goods, there is a distinct desire and expectation from consumers, customers and business, alike, to be able to; communicate, do seamless and real-time route checking or planning for improved time management and productivity, manage safety and security from anywhere, as well as access certain application services while on route.”

Graham confirms that Wi-Fi is ideal to incorporate in transport planning. “It doesn’t require fixed infrastructure to establish, can handle offloading 3G/4G capacity – particularly in high user density areas – with reliable connections and ubiquitous coverage and, it can differentiate service and access by user and device. For instance, a bus can be transformed into a moving Wi-Fi hotspot, which will create great value for the passengers and become a unique selling point for the bus company. However, the potential of Wi-Fi in transport is not just about passengers – when with the amplification of the Internet of Things (IoT) – it can enable smarter lifestyles for everyone.”

“Passengers also need real-time access to schedules, gate and ticket information, maps and/or other guidance as they pass through the bus terminal. Wi-Fi not only provides an ideal method for these activities, it also provides a platform for new revenue generating services such as additional Wi-Fi access or 3G/4G offload, as well as support for bus terminal operational needs such as point-of-sale, digital signage and video security. From a commercial perspective, there is also a global trend for transportation cargo and fleet services to become more involved in value added activities such as cargo processing and logistics, which will require new processes, practices and technological advances around stock control and integration, as well as better wireless connectivity,” adds Graham.

This is particularly true when we consider the significant advances in telematics technology and the future of smart vehicles. Fraser says: “The combination of connectivity, IoT and on-board technologies continues to drive the use of Big Data, which now lies at the centre of telematics technology. While the on-board computer is still an important component, advances in IoT and analytics provides the opportunity to access much richer data about the vehicle, its movements, the driver, etc. – and being able to effectively utilise this data to provide added value.”

The proliferation of Big Data and IoT are certainly two of the most significant change agents that continue to shape the future of telematics, however, when converged with leading-edge thinking into connected and autonomous vehicles (AVs) we can recognise the potential to truly transform transportation in the country.

Lutchman adds: “Autonomous vehicles or AVs are coming. A number of countries are already investing in supporting infrastructure and undertaking successful case studies. South Africa has the most sophisticated networks of transport infrastructure on the continent, and with the right planning and investment into required supporting infrastructure for connectivity, we could be ready for AVs post 2030.”

Global research* undertaken by WSP ∣ Parsons Brinckerhoff in the UK, in association with Farrells, found that AVs have the potential to support a better quality of life, economic growth, health, safety and social connections. They offer convenient and safer mobility, regardless of the driver’s capabilities, and could also help to improve the way that existing spaces and route networks work.

“Imagine a connected network of vehicles on our major highway, freeway and city centre routes. Because the vehicles will be pre-programmed to abide by the laws of the road, and able to connect to and access the latest in GPS mapping and data from other sources, these vehicles will be safer, more sustainable and more efficient than the vehicles of today,” adds Lutchman.

The company’s research also shows that in time AVs will be able to move around without direct driver input to transport people and goods, on demand, from door-to-door using the most efficient routes. Added to this, road transport systems of the future will interact seamlessly with other transport systems, offering end-to-end journey connectivity and resilience.

“Having networks of automated vehicles capable of completing journeys safely and efficiently – in normally encountered traffic, road and weather conditions – could significantly reduce collisions caused by driver error on our roads. Sophisticated telematics will still have a key role to play in ensuring visibility and, in the future, to monitor what will be known as the ‘robo driver’ (which too can come with its own set of challenges). If we consider that road fatalities cost the country billions of Rands every year – with the majority being caused by irresponsible driver behaviour – this should certainly be motivation for the country to adapt to these sophisticated transport modes in the future. Telematics data will remain an invaluable source of real-time insights when automation is present,” says Fraser.

Cars

Why sports cars make us feel good

Published

on

Forget romance, fine dining or an epic boxset binge – new preliminary research reveals that driving a sports car on a daily basis is among the best ways to boost your sense of wellbeing and emotional fulfilment.

The study measured “buzz moments” – peak thrills that play a vital role in our overall wellness – as volunteers cheered on their favourite football team, watched a gripping Game of Thrones episode, enjoyed a passionate kiss with a loved one or took an intense salsa dancing class. Only the occasional highs of riding a roller coaster ranked higher than the daily buzz of a commute in a sports car.

Working with neuroscientists and designers, Ford brought the research to life with the unique Ford Performance Buzz Car: a customised Ford Focus RS incorporating wearable and artificial intelligence technology to animate the driver’s emotions in real time across the car’s exterior. 

Watch the video here https://youtu.be/AFpt6jziFsU

“A roller coaster may be good for a quick thrill, but it’s not great for getting you to work every day,” said Dr Harry Witchel, Discipline Leader in Physiology. “This study shows how driving a performance car does much more than get you from A to B – it could be a valuable part of your daily wellbeing routine.”

Study participants who sat behind the wheel of a Ford Focus RS, Focus ST or Mustang experienced an average of 2.1 high-intensity buzz moments during a typical commute; this compared with an average of 3 buzz moments while riding on a roller coaster, 1.7 while on a shopping trip, 1.5 each while watching a Game of Thrones episode or a football match, and none at all while salsa dancing, fine dining or sharing a passionate kiss. 

For the research, Ford took one Focus RS and worked with Designworks to create the Buzz Car:

From concept, design and installation to software development and programming, the Buzz Car took 1,400 man-hours to create. Each “buzz moment” experienced by the driver – analysed using a real-time “emotional AI” system developed by leading empathic technology firm Sensum – produces a dazzling animation across almost 200,000 LED lights integrated into the car. The Buzz Car also features:

  • High-performance Zotac VR GO gaming PC
  • 110 x 500-lumen daylight-bright light strips
  • 82 display panels with 188,416 individually addressable LEDs

Driver state research

Researchers at the Ford Research and Innovation Center in Aachen, Germany are already looking into how vehicles can better understand and respond to drivers’ emotions. As part of the EUfunded ADAS&ME project, Ford experts are investigating how in-car systems may one day be aware of our emotions – as well as levels of stress, distraction and fatigue – providing prompts and warnings, and could even take control of the car in emergency situations.

“We think driving should be an enjoyable, emotional experience,” said Dr Marcel Mathissen, research scientist at Ford of Europe. “The driver-state research Ford and its partners are undertaking is helping to lead us towards safer roads and – importantly – healthier driving.”

Activity Buzz Moments *
Roller Coaster 3
Driving 2.1
Shopping 1.7
Game of Thrones 1.5
Football Game 1.5
Kissing 0
Salsa Dancing 0
Dining 0

* Average number of high-intensity buzz moments per participant

Continue Reading

Cars

Car that sees round corners

Published

on

Jaguar Land Rover is leading a £4.7 million (approximately R79 million) project to develop self-driving cars that can ‘see’ at blind junctions and through obstacles.

Britain’s biggest carmaker is leading a project called AutopleX to combine connected, automated and live mapping tech so more information is provided earlier to the self-driving car. This enables automated cars to communicate with all road users and obstacles where there is no direct view, effectively helping them see, so they can safely merge lanes and negotiate complex roundabouts autonomously.

Chris Holmes, Connected and Autonomous Vehicle Research Manager at Jaguar Land Rover said: “This project is crucial in order to bring self-driving cars to our customers in the near future. Together with our AutopleX partners, we will merge our connected and autonomous research to empower our self-driving vehicles to operate safely in the most challenging, real-world traffic situations. This project will ensure we deliver the most sophisticated and capable automated driving technology.”

Jaguar Land Rover is developing fully- and semi-automated vehicle technologies, offering customers a choice of an engaged or automated drive, while maintaining an enjoyable and safe driving experience. The company’s vision is to make the self-driving car viable in the widest range of real-life, on- and off-road driving environments and weather.

AutopleX will develop the technology through simulation and public road testing both on motorways and in urban environments in the West Midlands. Highways England, INRIX, Ricardo, Siemens, Transport for West Midlands and WMG at the University of Warwick join the AutopleX consortium, which was announced as part of Innovate UK’s third round of Connected and Autonomous Vehicle Funding in March 2018.

Continue Reading

Trending

Copyright © 2018 World Wide Worx