Connect with us

Mobile

Ericsson doubles mobile speed on same spectrum

Published

on

Even though 5G is only expected to become available in 2020, Ericsson has found a way to deliver drop-free, higher capacity mobile connections for both people and things – while making the most of available spectrum.

The next big generation of mobile networking, known as 5G, is not expected to be commercially available until 2020, but Ericsson already has indoor and outdoor 5G test networks in Sweden and the US. Ericsson’s latest 5G technology breakthrough provides a way to deliver drop-free, higher capacity mobile connections for both people and things – while making the most of available spectrum.

Mischa Dohler, Chair Professor of Wireless Communications and Head of the Centre for Telecommunications Research (CTR), King’s College London, says: “High-speed, highly reliable mobile networks are foundational to the tactile internet and the internet of skills that it will enable. The results that are being achieved in Ericsson’s live 5G test networks — much faster data rates, more resilient connections and squeezing capacity out of spectrum – are all critical to unleashing the new use cases that will drive 5G.

Ericsson’s latest 5G innovation sounds deceptively simple: The 5G mobile device connects to more than one 5G cell site at the same time. This is known as 5G multipoint connectivity. It provides the resiliency to ensure that the 5G device maintains a high-quality connection with the 5G network as it moves between cells. It also enables the transmission of different sets of multiple data signals (Multiple Input Multiple Output, or MIMO, streams) to the mobile device over the same frequency band. This is called distributed MIMO, and it can increase downlink throughput by 100%. And, because it is all transmitted in the same frequency band, it makes very efficient use of available spectrum. The combined technical capability is called Multipoint Connectivity with Distributed MIMO.

Dr. H√•kan Andersson, 5G Strategic Product Manager, Business Unit Radio, Ericsson, says: “To be ready for commercial networks in 2020, 5G research and development has to come out of the labs and into live test networks. Multipoint Connectivity with Distributed MIMO, supported on Ericsson’s 5G air interface, is just the latest example of 5G innovation moving into live test network implementation.

Multipoint Connectivity with Distributed MIMO involves very sophisticated signaling methods, which are not part of today’s LTE standards, to control the mobile device’s interaction with the network. So, while LTE technology is evolving to become an integral part of tomorrow’s 5G networks, 5G will also include innovative new air interfaces (including signaling, modulation schemes and other software-driven innovations) between the device and the network. Ericsson’s 5G air interface, dubbed “NX”, powers Multipoint Connectivity with Distributed MIMO.

5G will evolve the entire communication eco-system, from devices to mobile access, IP core and into the cloud. Ericsson’s latest 5G test network innovations focus on the interactions between mobile devices and the radio access network, indoors and outside.

Ericsson’s 5G test networks, including both 5G devices and 5G radio base stations, are running live at the company’s US and worldwide headquarters in Plano and Stockholm. The company welcomes mobile operators, eco-system partners, members of academia, tech media and analysts to visit these sites to witness and interact with Ericsson 5G innovations.

* Follow Gadget on Twitter on @GadgetZA

Continue Reading

Featured

Prepare for Wi-Fi 6

From traffic to healthcare, the applications of the new Wi-Fi 6 standard are set to transform how we connect.

Published

on

20 years ago, with the release of 802.11b, Wi-Fi began its conquest of the world networking scene in earnest. Wi-Fi can easily be called out as one of the most popular technologies of the last two decades. Just as mobile telephony and mobile internet, it has become a part of everyday life. And with the advent of IoT and the introduction of 5G, the time has come for the new standard – Wi-Fi 6.

Beyond being significantly faster than the previous generation, Wi-Fi 6 delivers up to four times greater capacity. Latency is vastly improved, allowing for near real-time use cases. Wi-Fi 6 is also easier on connected devices’ batteries.

So what impact will Wi-Fi 6 have on business in the coming years?

Digitisation, mobility and IoT are driving the need for connectivity. By 2022, more IP traffic will cross global networks than in all prior ‘internet years’ combined up to the end of 2016. In other words, more traffic will be created in 2022 than in the 32 years since the internet started. In 3 years, 28 billion devices will be connected to the Internet, many of which (robots, production lines, medical devices) will communicate over a wireless network. Against this background, it is easy to understand why we need a redesigned wireless standard that is more responsive to present and future challenges.

Wi-Fi 6: The business impact

“In the first phase, we expect the new wireless standard to gain a significant foothold in the B2B field, where it brings important innovations,” said Garsen Naidu, Country Manager, Cisco South Africa. “We will see it, together with other technologies, penetrate significantly into manufacturing, into the logistics industry. The technology is also more effective in high-density settings like large lecture halls, stadiums and conference rooms, so we are likely to see significant penetration in these settings too. And, with its extremely low latency, Wi-Fi 6 also promises to open up new opportunities in AR/VR, healthcare, and self-driving vehicles. ”

Ever since the launch of the Internet, every leap in network speed has had a major impact on technological innovation: 4G has brought along the age of smartphones, whilst 5G and Wi-Fi 6 will transform the business world. According to Cisco experts, these two technologies – 5G and Wi-Fi – will be widely adopted at the same time, complementing each other.

A short history of Wi-Fi

In 1999, half a dozen technology companies, including Aironet, which was later acquired by Cisco, formed the Wireless Ethernet Compatibility Alliance. The standard announced that year, 802.11b, which gained significant commercial traction, was the first to emerge under the ‘Wi-Fi’ brand. As such, 1999 marks the year in which Wi-Fi really began.

Solutions that carry the official Wi-Fi logo work consistently with the IEEE 802.11 data transfer standard. These solutions are certified by the Wi-Fi Alliance, which guarantees compatibility between various wireless devices. In addition, networking manufacturers have done a lot to improve compatibility. Launched as early as 2002, Cisco Compatible eXtensions is a free licensing program that has enabled other vendors’ Wi-Fi products to be securely deployed on Cisco wireless networks.

Subsequent developments in Wi-Fi technology included managing interference and increasing data stability. Cisco is supporting these with the Cisco Flexible Radio Assignment and Cisco CleanAir technologies. The latter is capable of identifying and graphically displaying radio interference, identifying the source of the problem, and directing users to other, less crowded, channels.

Challenges of the present and opportunities for the future

One of the most widespread business applications of wireless technology is office Wi-Fi. Using Wi-Fi, employees can move freely and access the network from anywhere where there is a hotspot. Wi-Fi-based analysis and location services are also becoming increasingly popular. And with the spread of IoT, Wi-Fi is becoming ubiquitous, and is today found everywhere from agricultural fields to production lines.

“We see promising business opportunities and a wide range of new applications. At the same time, with hundreds and thousands of new devices connecting to wireless networks, IT teams are facing increasing complexity. So we need to rethink IT architectures from the ground-up,” added Naidu.

Much of this need to rethink network architectures is driven by the enormous growth in wireless connectivity.

Wi-Fi has driven growth in general IT use, which in turn has led to the need to provide and run bigger and more complex networks with a greater variety of endpoint device types on them. This complexity ‘feedback loop’, driven in no small part by Wi-Fi, requires that new solutions are developed to deal with this complexity.

Cisco has pioneered in this area, using AI, machine learning, and machine reasoning, via products such as Cisco DNA Assurance to eliminate manual troubleshooting and reduce the time spent resolving service issues.

The latest Wi-Fi 6 developments introduced earlier this year make a consistent, efficient and seamless wireless connectivity experience a reality.

Continue Reading

Mobile

Getting London wired

Published

on

Ruckus Wireless has been selected by Telefónica UK, which operates the O2 brand, to supply high-capacity small cell products for high-speed wireless services being deployed throughout London.

Already deployed throughout the busiest, iconic areas in central London, such as Trafalgar Square, Parliament Square, Leicester Square, Regent Street and Oxford Street, Ruckus SmartCell 8800s have initially been deployed to provide free, fast and reliable Wi-Fi to anyone.

Within a single, low-profile design, the SmartCell 8800 is the first carrier-grade, modular multi-radio system to integrate patented adaptive antenna array technology supporting multiple licensed and unlicensed radio technologies including: high-speed dual-band 802.11n Wi-Fi, small cell 3G/4G radios and 5GHz wireless backhaul. This gives Telefónica UK the flexibility to easily and economically offer high-speed Wi-Fi and cellular services in specific locations when needed.

‚”For O2, it’s all about us providing customers with fast and reliable connectivity where they need it,‚” said Derek McManus, chief operating officer for Telef√≥nica UK. ‚”Our vision is for Wi-Fi to be simply another access layer to our mobile core. Customers don’t really care about the underlying technology: they care about getting connected, fast and reliably. The introduction of small cells helps us to support these requirements and completely complements our mobile strategy by letting us push capacity closer to users in locations where it makes the most sense.‚”

‚”In telecoms there is now a mad race to the lamppost, and the first one there wins,‚” said Selina Lo, president and CEO of Ruckus Wireless. ‚”A big barrier in small cell deployment is simply securing the physical locations with the requisite power and backhaul to support small cells. Once physical assets secured, it becomes important for operators to exploit them with as much technology as they can. This means multi-function, carrier-grade products that are simple deploy, unobtrusive and massively scalable. SmartCell is one of those products and O2 is one of those operators taking a lead in this race.‚”

After extensive evaluations of wireless suppliers, Telef√≥nica UK selected Ruckus and its SmartCell system. ‚”It all really boiled down to who had the best Wi-Fi for carriers and the most forward-thinking strategy to integrate Wi-Fi within existing and future cellular infrastructure,‚” said McManus.

‚”Such partnerships prove that industry players are starting to see the benefits Wi-Fi is bringing to their services,‚” adds Michael Fletcher sales director for Ruckus Wireless sub-Saharan Africa. ‚”We are likely to continue to see more industry players embracing this transformation globally, and hopefully locally as well as operators look for solutions to cater for their growing customer base.‚”

Beating the Backhaul Dilemma

‚”A major challenge with small cell deployments is how to reliably backhaul traffic from potentially thousands of small cell nodes without breaking the bank,‚” said Robert Joyce, chief radio engineer at Telef√≥nica UK.‚”

Telefónica UK effectively eliminates this problem by meshing traffic over highly reliable 5GHz Wi-Fi mesh links between nodes using Ruckus Smart Mesh technology. Smart Mesh uses advanced self-organising network (SON) principles with Ruckus-patented adaptive antenna arrays (BeamFlex) and predictive channel management techniques (ChannelFly). Combined these technologies create highly resilient, high-speed Wi-Fi mesh backbone links between nodes that automatically adapt to changes in environmental conditions.

Thought by many to not be possible, Smart Mesh has demonstrated to deliver reliable backhaul for licensed cellular and unlicensed Wi-Fi traffic in both line of sight and non-line of site environments.

‚”Ruckus Smart Mesh technology is proving to offer a cost-effective, reliable and flexible alternative to conventional approaches,‚” said Joyce. ‚”With Smart Mesh, we are running fiber to just one of every five nodes. This has proven to be a huge benefit in reducing capital and operational expense with the added bonus of reducing the time to market.‚”

Big Improvements with Small Cells

Small cells represent a new architectural approach for injecting much needed capacity into service provider networks. Small cells are miniature base stations that combine licensed and unlicensed radio technology with wireless backhaul to deliver lower powered wireless signals much closer to mobile users. This results in better signal coverage, improved voice quality and higher data performance.

Small cells enable operators to provide a premium quality mobile signal where it was never previously economic, such as indoor environments and remote outdoor locations. They also enable operators to meet the burgeoning demand for mobile data, by multiplying the data capacity of the macro network at a fraction of the cost.

With the Ruckus SmartCell system, mobile operators gain a capacity boost from LTE small cells, cutting costs and complexity by co-locating and combining them with Wi-Fi access points, sharing site-lease agreements and backhaul. The integration of Wi-Fi and LTE small cells within the cellular core also helps operators optimize network utilization across the radio access network, providing a further improvement in performance, and creating a seamless experience for subscribers.

* Follow Gadget on Twitter on @gadgetza

Continue Reading

Trending

Copyright © 2019 World Wide Worx