Gadget

AWS launches 5 ML services, deep learning cam

At the AWS Re:Invent conference in Las Vegas last week, Amazon Web Services announced five new machine learning services and a deep learning-enabled wireless video camera for developers. 

At the AWS Re:Invent conference in Las Vegas last week, Amazon Web Services announced five new machine learning services and a deep learning-enabled wireless video camera for developers.

Amazon SageMaker is a fully managed service for developers and data scientists to quickly build, train, deploy, and manage their own machine learning models. AWS also introduced AWS DeepLens, a deep learning-enabled wireless video camera that can run real-time computer vision models to give developers hands-on experience with machine learning. And, AWS announced four new application services that allow developers to build applications that emulate human-like cognition: Amazon Transcribe for converting speech to text; Amazon Translate for translating text between languages; Amazon Comprehend for understanding natural language; and, Amazon Rekognition Video, a new computer vision service for analyzing videos in batches and in real-time. To learn more about AWS’s machine learning services, visit: https://aws.amazon.com/machine-learning.com.

Amazon SageMaker and AWS DeepLens make machine learning accessible to all developers

Today, implementing machine learning is complex, involves a great deal of trial and error, and requires specialized skills. Developers and data scientists must first visualize, transform, and pre-process data to get it into a format that an algorithm can use to train a model. Even simple models can require massive amounts of compute power and a great deal of time to train, and companies may need to hire dedicated teams to manage training environments that span multiple GPU-enabled servers. All of the phases of training a model—from choosing and optimizing an algorithm, to tuning the millions of parameters that impact the model’s accuracy—involve a great deal of manual effort and guesswork. Then, deploying a trained model within an application requires a different set of specialized skills in application design and distributed systems. As data sets and variables grow, customers have to repeat this process again and again as models become outdated and need to be continuously retrained to learn and evolve from new information. All of this takes a lot of specialized expertise, access to massive amounts of compute power and storage, and a great deal of time. To date, machine learning has been out of reach for most developers.

Amazon SageMaker is a fully managed service that removes the heavy lifting and guesswork from each step of the machine learning process. Amazon SageMaker makes model building and training easier by providing pre-built development notebooks, popular machine learning algorithms optimized for petabyte-scale datasets, and automatic model tuning. Amazon SageMaker also dramatically simplifies and accelerates the training process, automatically provisioning and managing the infrastructure to both train models and run inference to make predictions using these models. AWS DeepLens was designed from the ground-up to help developers get hands-on experience in building, training, and deploying models by pairing a physical device with a broad set of tutorials, examples, source code, and integration with familiar AWS services to support learning and experimentation.

“Our original vision for AWS was to enable any individual in his or her dorm room or garage to have access to the same technology, tools, scale, and cost structure as the largest companies in the world. Our vision for machine learning is no different,” said Swami Sivasubramanian, VP of Machine Learning, AWS. “We want all developers to be able to use machine learning much more expansively and successfully, irrespective of their machine learning skill level. Amazon SageMaker removes a lot of the muck and complexity involved in machine learning to allow developers to easily get started and become competent in building, training, and deploying models.”

With Amazon SageMaker developers can:

With AWS DeepLens, developers can:

“We’ve deepened our relationship with AWS, adding them as an Official Technology Provider of the NFL and are excited to use Amazon SageMaker for our next-generation stats initiative,” said Michelle McKenna-Doyle, SVP and CIO, National Football League. “With Amazon SageMaker in our toolkit, our developers can stop worrying about the undifferentiated heavy lifting of machine learning, and start adding new visualizations, stats, and experiences that our fans will adore.”

As the world’s leading provider of high-resolution Earth imagery, data and analysis, DigitalGlobe works with enormous amounts of data every day. “DigitalGlobe is making it easier for people to find, access, and run compute against our 100PB image library which is stored in the AWS cloud in order to apply deep learning to satellite imagery,” said Dr. Walter Scott, Chief Technology Officer of Maxar Technologies and founder of DigitalGlobe. “We plan to use Amazon SageMaker to train models against petabytes of earth observation imagery datasets using hosted Jupyter notebooks, so DigitalGlobe’s Geospatial Big Data Platform (GBDX) users can just push a button, create a model, and deploy it all within one scalable distributed environment at scale.”

Hotels.com is a leading global lodging brand operating 90 localized websites in 41 languages, “At Hotels.com, we are always interested in ways to move faster, to leverage the latest technologies and stay innovative,” says Matt Fryer, VP and Chief Data Science Officer of Hotels.com and Expedia Affiliate Network. “With Amazon SageMaker, the distributed training, optimized algorithms, and built-in hyperparameter features should allow my team to quickly build more accurate models on our largest data sets, reducing the considerable time it takes us to move a model to production. It is simply an API call. Amazon SageMaker will significantly reduce the complexity of machine learning, enabling us to create a better experience for our customers, fast.”

Intuit recognizes the enormous value and power of machine learning to help its customers make better decisions and streamline their work, every day. “With Amazon SageMaker, we can accelerate our artificial intelligence initiatives at scale by building and deploying our algorithms on the platform,” says Ashok Srivastava, Chief Data Officer at Intuit. “We will create novel large-scale machine learning and AI algorithms and deploy them on this platform to solve complex problems that can power prosperity for our customers.”

Thomson Reuters is the world’s leading source of news and information for professional markets. “For over 25 years we have been developing advanced machine learning capabilities to mine, connect, enhance, organize and deliver information to our customers, successfully allowing them to simplify and derive more value from their work,” said Khalid Al-Kofahi, who leads Thomson Reuters center for AI and Cognitive Computing. “Working with Amazon SageMaker enabled us to design a natural language processing capability in the context of a question-answering application. Our solution required several iterations of deep learning configurations at scale using the capabilities of Amazon SageMaker.”

“Deep learning is something that our students find really inspiring. It seems like every week now it is leading to new breakthroughs in robotics, language, and biology. What I like about AWS DeepLens is that it seems likely to democratize access to experimenting with machine learning,” said Andrew Moore, Dean of the School of Computer Science at Carnegie Mellon University. “Campuses like ours are going to be really excited to bring AWS DeepLens into our classrooms and labs to help accelerate the process of getting students into real-world deep learning.”

New speech, language, and vision services allow app developers to easily build intelligent applications

For those developers who are not experts in machine learning, but are interested in using these technologies to build a new class of apps that exhibit human-like intelligence, Amazon Transcribe, Amazon Translate, Amazon Comprehend, and Amazon Rekognition video provide high-quality, high-accuracy machine learning services that are scalable and cost-effective.

“Today, customers are storing more data than ever before, using Amazon Simple Storage Service (Amazon S3) as their scalable, reliable, and secure data lake. These customers want to put this data to use for their organization and customers, and to do so they need easy-to-use tools and technologies to unlock the intelligence residing within this data,” said Swami Sivasubramanian, VP of Machine Learning, AWS. “We’re excited to deliver four new machine learning application services that will help developers immediately start creating a new generation of intelligent apps that can see, hear, speak, and interact with the world around them.”

“At Isentia, we built our media intelligence software in a single language. To expand our capabilities and address the diverse language needs of our customers, we needed translation support to generate and deliver valuable insights from non-English media content. Having tried multiple machine translation services in the past, we are impressed with how easy it is to integrate Amazon Translate into our pipeline and its ability to scale to handle any volume we throw at it. The translations also came out more accurate and nuanced and met our high standards for clients,” says Andrea Walsh, CIO at Isentia.

“RingDNA is an end-to-end communications platform for sales teams. Hundreds of enterprise organizations use RingDNA to dramatically increase productivity, engage in smarter sales conversations, gain predictive sales insights, improve their win rate and coach reps to succeed faster than ever before. A critical component of RingDNA’s Conversation AI requires best of breed speech-to-text to deliver transcriptions of every phone call. RingDNA is excited about Amazon Transcribe since it provides high-quality speech recognition at scale, helping us to better transcribe every call to text,” said Howard Brown, CEO and Founder at RingDNA.

“The Post strives to give its nearly 100 million readers the best experience possible and relevant content recommendations are a key part of that mission,” said Dr. Sam Han (PhD), Director of Data Science at The Washington Post. “With Amazon Comprehend, we can leverage the continuously-trained NLP capabilities like Keyphrase and Topic APIs to potentially allow us to provide even better content personalization, SEO, and ad targeting capabilities.”

“Building intelligent applications to help customers drive their businesses is our entire focus,” said Manjunath Ganimasty, V.P. Software Development with Infor. “Amazon Comprehend allows us to analyze unstructured text within search, chat, and documents to understand intent and sentiment. This capability enables us to train our Coleman AI skillset, and also provide a truly focused and tailored search experience for our customers.”

“Natural language processing is hard. We’ve looked at everything from closed to open-source solutions to analyze and make sense of our data, but couldn’t find a practical solution that would allow us to stay agile, scalable, and cost effective. Amazon Comprehend provides a continuously-trained model allowing us to focus on our business and innovate in Supply Chain Management (SCM),” said Minh Chau, Head of Engineering at Elementum.

“The City of Orlando is excited to work with Amazon to pilot the latest in public safety software through a unique, first-of-its-kind public-private partnership,” said John Mina Police Chief., City of Orlando. “Through the pilot, Orlando will utilize Amazon’s Rekognition Video and Acuity technology in a way that will use existing City resources to provide real-time detection and notification of persons-of-interest, further increasing public safety and operational efficiency opportunities for the City of Orlando and other cities across the nation. ”

“The analytic features of Amazon Rekognition Video are impressive. They can, for example, help with search of historical and real time video for persons-of-interest, providing efficiencies and awareness by automating this typically human task,” Dan Law, Chief Data Scientist at Motorola.

Exit mobile version