Connect with us

Cars

Why sports cars make us feel good

Published

on

Forget romance, fine dining or an epic boxset binge – new preliminary research reveals that driving a sports car on a daily basis is among the best ways to boost your sense of wellbeing and emotional fulfilment.

The study measured “buzz moments” – peak thrills that play a vital role in our overall wellness – as volunteers cheered on their favourite football team, watched a gripping Game of Thrones episode, enjoyed a passionate kiss with a loved one or took an intense salsa dancing class. Only the occasional highs of riding a roller coaster ranked higher than the daily buzz of a commute in a sports car.

Working with neuroscientists and designers, Ford brought the research to life with the unique Ford Performance Buzz Car: a customised Ford Focus RS incorporating wearable and artificial intelligence technology to animate the driver’s emotions in real time across the car’s exterior. 

Watch the video here https://youtu.be/AFpt6jziFsU

“A roller coaster may be good for a quick thrill, but it’s not great for getting you to work every day,” said Dr Harry Witchel, Discipline Leader in Physiology. “This study shows how driving a performance car does much more than get you from A to B – it could be a valuable part of your daily wellbeing routine.”

Study participants who sat behind the wheel of a Ford Focus RS, Focus ST or Mustang experienced an average of 2.1 high-intensity buzz moments during a typical commute; this compared with an average of 3 buzz moments while riding on a roller coaster, 1.7 while on a shopping trip, 1.5 each while watching a Game of Thrones episode or a football match, and none at all while salsa dancing, fine dining or sharing a passionate kiss. 

For the research, Ford took one Focus RS and worked with Designworks to create the Buzz Car:

From concept, design and installation to software development and programming, the Buzz Car took 1,400 man-hours to create. Each “buzz moment” experienced by the driver – analysed using a real-time “emotional AI” system developed by leading empathic technology firm Sensum – produces a dazzling animation across almost 200,000 LED lights integrated into the car. The Buzz Car also features:

  • High-performance Zotac VR GO gaming PC
  • 110 x 500-lumen daylight-bright light strips
  • 82 display panels with 188,416 individually addressable LEDs

Driver state research

Researchers at the Ford Research and Innovation Center in Aachen, Germany are already looking into how vehicles can better understand and respond to drivers’ emotions. As part of the EUfunded ADAS&ME project, Ford experts are investigating how in-car systems may one day be aware of our emotions – as well as levels of stress, distraction and fatigue – providing prompts and warnings, and could even take control of the car in emergency situations.

“We think driving should be an enjoyable, emotional experience,” said Dr Marcel Mathissen, research scientist at Ford of Europe. “The driver-state research Ford and its partners are undertaking is helping to lead us towards safer roads and – importantly – healthier driving.”

Activity Buzz Moments *
Roller Coaster 3
Driving 2.1
Shopping 1.7
Game of Thrones 1.5
Football Game 1.5
Kissing 0
Salsa Dancing 0
Dining 0

* Average number of high-intensity buzz moments per participant

Continue Reading

Cars

Body-tracking tech moves to assembly line

Technology typically used by the world’s top sport stars to raise their game, or ensure their signature skills are accurately replicated in leading video games, is now being used on an auto assembly line.

Published

on

Employees at Ford’s Valencia Engine Assembly Plant, in Spain, are using a special suit equipped with advanced body tracking technology. The pilot system, created by Ford and the Instituto Biomecánica de Valencia, has involved 70 employees in 21 work areas. 

Player motion technology usually records how athletes sprint or turn, enabling sport coaches or game developers to unlock the potential of sport stars in the real world or on screen. Ford is using it to design less physically stressful workstations for enhanced manufacturing quality.

“It’s been proven on the sports field that with motion tracking technology, tiny adjustments to the way you move can have a huge benefit,” said Javier Gisbert, production area manager, Ford Valencia Engine Assembly Plant. “For our employees, changes made to work areas using similar technology can ultimately ensure that, even on a long day, they are able to work comfortably.”

Engineers took inspiration from a suit they saw at a trade fair that demonstrated how robots could replicate human movement and then applied it to their workplace, where production of the  new Ford Transit Connect and 2.0-litre EcoBoost Duratec engines began this month.

The skin-tight suit consists of 15 tiny movement tracking light sensors connected to a wireless detection unit. The system tracks how the person moves at work, highlighting head, neck, shoulder and limb movements. Movement is recorded by four specialised motion-tracking cameras – similar to those usually paired with computer game consoles – placed near the worker and captured as a 3D skeletal character animation of the user.

Specially trained ergonomists then use the data to help employees align their posture correctly. Measurements captured by the system, such as an employee’s height or arm length, are used to design workstations, so they better fit employees. 

Continue Reading

Cars

Electric cars begin to bridge the luxury gap

A new era has dawned as electric mobility bridges the gap between luxury and necessity, writes TREVOR HILL – head of Audi South Africa.

Published

on

Mobility is essential to today’s world. We travel to get to work, to go shopping, and to meet friends and family – in short, effective transport impacts on all aspects of our modern lives. Access to mobility is critical to economic growth and progress, bringing more opportunities and better productivity. At the same time however, growing environmental concerns and a looming shortage of fossil fuels have created tension between our ever-growing demand for mobility and the health of our planet.

Growing populations, increasing urbanization and economic and social development mean that there are more cars on our roads each day. The knock-on effects of this are greater levels of congestion and longer times spent commuting, which means more stress and higher levels of aggression on the road. Skyrocketing levels of air pollution – to which transportation is one of the leading contributors – has negative effects on both health and climate change, both of which are key issues in global policy agendas.

So, the writing has been on the wall for some time. The gold standard in automotive technological progress has thus been to achieve a radical reduction of engine emissions and the development of electric cars has been at the forefront of this charge. We have now entered the beginning of a new era, as more and more of these vehicles take to the roads. Electric cars are now at the cusp of the mass market, with a steady stream of new models set to reach the consumer in future. Last week, we launched the Audi e-tron, our first all-electric-drive SUV, at a world premiere in San Francisco – one huge leap forward in pursuit of our goal. Audi will also bring more than 20 electrified models to the market by 2025, from the compact class to the full-size category. Around a dozen models will be all-electric, while the remainder will be plug-in hybrids for emission-free driving on shorter journeys.

Powering this development is ongoing improvement in battery technology, with increasing energy density and lengthened driving ranges possible between charges. Consumers have noted that they feel confident using electric cars for day-to-day use once battery technology can sustain a driving range of 300 or more kilometres, which is now possible. The Audi e-tron has a range of 400 kilometers, making it ideal for long distance driving. Drivers who charge the e-tron overnight can set off in the morning in full confidence that they won’t need to stop at a charging station as they go about their day.

What this technological progress also means however, is that the levels of power and performance achieved by an electric car draw ever closer to those of traditional engines. For anyone who loves high strung, powerful engines and the rush of adrenaline that comes from flooring the throttle on an empty stretch of road, this is no small thing.  At Audi, we are lucky to be surrounded by some of the most exceptional engines ever produced, so few people understand the thrill of an extraordinary driving experience better than we do. So, the holy grail is to achieve this same performance with vastly improved economy.

The Audi e-tron’s electric drive has two asynchronous motors, one at the front, one at the rear, with a total output of 300 kW of power. This allows the Audi e-tron to accelerate from 0 to 100km/h in just 5.7 seconds.

The next step will be the development of electric cars suitable for those who regularly drive long distances, entailing further advances in battery technology, and the development of a network of charging stations across the country. The battery for the Audi e-tron is designed to last the entire life cycle of the vehicle. When charged at a high-power charging station at up to 150 kW, the Audi e-tron can be restored to 80% in less than half an hour. At 22 kW, the Audi e-tron can charge its battery to 100% in around four and a half hours.

For city dwellers, however, the age of electric mobility has well and truly arrived. Rapid advances in technology continue to drive progress; the rise of electric cars is only one of many developments set to transform transportation as we know it, heralding a cleaner, more efficient future.

 

Continue Reading

Trending

Copyright © 2018 World Wide Worx