Connect with us

Featured

We have to rethink data

Published

on

In today’s era of global digitalization there are many examples that show that IT matters. Developments like cloud computing, the IoT and AI are proving that IT has again become a business driver, says WERNER VOGELS, CTO of Amazon.com.

How companies can use ideas from mass production to create business with data

Strategically, IT doesn’t matter. That was the provocative thesis of a much-talked-about article from 2003 in the Harvard Business Review by the US publicist Nicolas Carr. Back then, companies spent more than half of their entire investment for their IT, in a non-differentiating way. In a world in which tools are equally accessible for every company, they wouldn’t offer any competitive advantage – so went the argument. The author recommended steering investments toward strategically relevant resources instead. In the years that followed, many companies outsourced their IT activities because they no longer regarded them as being part of the core business.

A new age

Nearly 15 years later, the situation has changed. In today’s era of global digitalization there are many examples that show that IT does matter. Developments like cloud computing, the internet of things, artificial intelligence, and machine learning are proving that IT has (again) become a strategic business driver. This is transforming the way companies offer products and services to their customers today. Take the example of industrial manufacturing: in prototyping, drafts for technologically complex products are no longer physically produced; rather, their characteristics can be tested in a purely virtual fashion at every location across the globe by using simulations. The German startup SimScale makes use of this trend. The founders had noticed that in many companies, product designers worked in a very detached manner from the rest of production. The SimScale platform can be accessed through a normal web browser. In this way, designers are part of an ecosystem in which the functionalities of simulations, data and people come together, enabling them to develop better products faster.

Value-added services are also playing an increasingly important role for both companies and their customers. For example, Kärcher, the maker of cleaning technologies, manages its entire fleet through the cloud solution “Kärcher Fleet”. This transmits data from the company’s cleaning devices e.g. about the status of maintenance and loading, when the machines are used, and where the machines are located. The benefit for customers: Authorized users can view this data and therefore manage their inventories across different sites, making the maintenance processes much more efficient.

Kärcher benefits as well: By developing this service, the company gets exact insight into how the machines are actually used by its customers. By knowing this, Kärcher can generate new top-line revenue in the form of subscription models for its analysis portal.

More than mere support

These examples underline that the purpose of software today is not solely to support business processes, but that software solutions have broadly become an essential element in multiple business areas. This starts with integrated platforms that can manage all activities, from market research to production to logistics. Today, IT is the foundation of digital business models, and therefore has a value-added role in and of itself. That can be seen when sales people, for example, interact with their customers in online shops or via mobile apps. Marketers use big data and artificial intelligence to find out more about the future needs of their customers. Breuninger, a fashion department store chain steeped in tradition, has recognized this and relies on a self-developed e-commerce platform in the AWS Cloud. Breuninger uses modern templates for software development, such as Self-Contained Systems (SCS), so that it can increase the speed of software development with agile and autonomous teams and quickly test new features. Each team acts according to the principle: “You build it, you run it”. Hence, the teams are themselves responsible for the productive operation of the software. The advantage of this approach is that when designing new applications, there is already a focus on the operating aspects.

Value creation through data

In a digital economy, data are at the core of value creation, whereas physical assets are losing their significance in business models. Until 1992, the most highly valued companies in the S&P 500 Index were those that made or distributed things (for example the pharmaceutical industry, trade). Today, developers of technology (for example medical technology, software) and platform operators (social media enablers, credit card companies) are at the top. Also, trade with data contributes more to global growth than trade with goods. Therefore, IT has never been more important for strategy than it is now – not only for us, but for every company in the digital age. Anyone who wants to further develop his business digitally can’t do that today without at the same time thinking about which IT infrastructure, which software and which algorithms he needs in order to achieve his plans.

If data take center stage then companies must learn how to create added value out of it – namely by combining the data they own with external data sources and by using modern, automated analytics processes. This is done through software and IT services that are delivered through software APIs.

Companies that want to become successful and innovative digital players need to get better at building software solutions.We should ponder how we can organize the ‘production’ of data in such a way so that we ultimately come out with a competitive advantage. We need mechanisms that enable the mass production of data using software and hardware capabilities. These mechanisms need to be lean, seamless and effective. At the same time, we need to ensure that quality requirements can be met. Those are exactly the challenges that were solved for physical goods through the industrialization of manufacturing processes. A company that wants to industrialize ‘software production’ needs to find ideas on how to achieve the same kind of lean and qualitatively first-class mass production that has already occurred for industrial goods. And inevitably, the first place to look will be lean production approaches such as Kanban and Kaizen, or total quality management. In the 1980s, companies like Toyota revolutionized the production process by reengineering the entire organization and focusing the company on similar principles. Creating those conditions, both from an organizational and IT- standpoint, is one of the biggest challenges that companies face in the digital age.

Learn from lean

Can we transfer this success model to IT as well? The answer is yes. In the digital world, it is decisive to activate data-centric processes and continuously improve them. Thus, any obstacles that stand in the way of experimentation and the further development of new ideas should be removed as fast as possible. Every new IT project should be regarded as an idea that must go through a data factory – a fully equipped production site with common processes that can be easily maintained. The end-product is high-quality services or algorithms that support digital business models. Digital companies differentiate themselves through their ideas, data and customer relationships. Those that find a functioning digital business model the fastest will have a competitive edge. Above all, the barrier between software development and the operating business has to be overcome. The reason is that the success and speed and frequency of these experiments depend on the performance of IT development, and at the same time on the relevance of the solutions for business operations. Autoscout24 has gained an enormous amount of agility through its cloud solution. The company meanwhile has 15 autonomous interdisciplinary teams working constantly to test and explore new services. The main goal in all this is to have the possibility to quickly iterate experiments through the widest range of architectures, combine services with each other, and compare approaches.

In order to become as agile as Autoscout24, companies need a “machine” that produces ideas. Why not transfer the success formulas from industrial manufacturing and the principles of quality management to the creation of software?

German industrial companies in particular possess a manufacturing excellence that has been built up over many decades. Where applicable, they should do their best to transfer this knowledge to their IT, and in particular to their software development.

In many companies, internal IT knowhow has not developed fast enough in the last few years – quite contrary to the technological possibilities. Customers provide feedback online immediately after their purchase. Real-time analyses are possible through big data and software updates are generated daily through the cloud. Often, the IT organization and its associated processes couldn’t keep up. As a consequence, specialist departments with the structures of yesterday are supposed to fulfill customer requirements of tomorrow. Bringing innovative products and services quickly to market is not possible with long-term IT sourcing cycles. It’s no wonder that many of specialist departments try to circumvent their own IT department, for example by shifting activities to the cloud, which offers many powerful IT building blocks through easy-to-use APIs for which companies previously had to operate complicated software and infrastructure. Such a decentralized ‘shadow IT’ delivers no improvements. The end effect is that the complexity of the system increases, which is not efficient. This pattern should be broken. Development and Operations need to work hand in hand instead of working sequentially after each other, as in the old world. And ideally, this should be done in many projects running parallel. Under the heading of DevOps – the combination of “Development and Operations” – IT guru Gene Kim has described the core characteristics of this machinery.

Ensuring the flow

Kim argues that theorganization must be built around the customer benefit and that the flow of projects must be as smooth as possible. Hurdles that block the creation of client benefits should be identified and removed. At Amazon this starts by staffing projects with cross-functional and interdisciplinary teams as a rule. Furthermore, for the sake of agility the teams should not exceed a certain size. We have a rule that teams should be exactly the size that allows everyone to feel full after eating two (large!) pizzas. This approach reduces the number of necessary handovers, increases responsibility, and allows the team to provide customers with software faster.

Incorporating feedback

The earlier client feedback flows back into the “production process”, the better. In addition, companies must ensure that every piece of feedback is applied to future projects. To avoid getting lost in endless feedback loops, this should be organized in a lean way: Obtaining the feedback of internal and external stakeholders must by no means hamper the development process.

Learning to take risks

“Good intentions never work, you need good mechanisms to make anything happen,” says Jeff Bezos. For that, you need a corporate culture that teaches employees to experiment constantly and deliver. With every new experiment, one should risk yet another small step forward behind the previous step. At the same time, from every team we need data based on predefined KPIs about the impact of the experiments. And we need to establish mechanisms that take effect immediately if we go too far or if something goes wrong, for example if the solution never reached the customer.

Anyone who has tried this knows it’s not easy to start your own digital revolution in the company and keep the momentum going. P3 advises cellular operators and offers its customers access to data that provide information about the quality of cellular networks (for example signal strength, broken connection and the data throughput) – worldwide and independent of the network operator and cellular provider. This allows the customers to come up with measures in order to expand their networks or new offerings for a more efficient utilization of their capacity. By introducing DevOps tools, P3 can define an automated process that implements the required compute infrastructure in the AWS Cloud and deploys project-specific software packages with the push of a button. Moreover, the process definition can be revised by developers, the business or data scientists at any time, for example in order to develop new regions, add analytics software or implement new AWS services. Now P3 can focus fully on its core competence, namely developing its proprietary software. Data scientists can use their freed-up resources to analyze in real time data that are collected from around the world and put insights from the analysis at the disposal of their clients

The cloud offers IT limitless possibilities on the technical side, from which new opportunities have been born. But it’s becoming ever clearer what is required in order to make use of these opportunities. Technologies change faster than people. And individuals faster than entire organizations. Tackling these challenges is a strategic necessity. Changing the organization is the next bottleneck on the way to becoming a digital champion.

Continue Reading

Featured

Earth 2050: memory chips for kids, telepathy for adults

An astonishing set of predictions for the next 30 years includes a major challenge to the privacy of our thoughts.

Published

on

By 2050, most kids may be fitted with the latest memory boosting implants, and adults will have replaced mobile devices with direct connectivity through brain implants, powered by thought.

These are some of the more dramatic forecasts in Earth 2050, an award-winning, interactive multimedia project that accumulates predictions about social and technological developments for the upcoming 30 years. The aim is to identify global challenges for humanity and possible ways of solving these challenges. The website was launched in 2017 to mark Kaspersky Lab’s 20th birthday. It comprises a rich variety of predictions and future scenarios, covering a wide range of topics.

Recently a number of new contributions have been added to the site. Among them Lord Martin Rees, the UK’s Astronomer Royal, Professor at Cambridge University and former President of the Royal Society; investor and entrepreneur Steven Hoffman, Peter Tatchell, human rights campaigner, along withDmitry Galov, security researcher and Alexey Malanov, malware analyst at Kaspersky Lab.

The new visions for 2050 consider, among other things:

  • The replacement of mobile devices with direct connectivity through brain implants, powered by thought – able to upload skills and knowledge in return – and the impact of this on individual consciousness and privacy of thought.
  • The ability to transform all life at the genetic level through gene editing.
  • The potential impact of mistakes made by advanced machine-learning systems/AI.
  • The demise of current political systems and the rise of ‘citizen governments’, where ordinary people are co-opted to approve legislation.
  • The end of the techno-industrial age as the world runs out of fossil fuels, leading to economic and environmental devastation.
  • The end of industrial-scale meat production, as most people become vegan and meat is cultured from biopsies taken from living, outdoor reared livestock.

The hypothetical prediction for 2050 from Dmitry Galov, security researcher at Kaspersky Lab is as follows: “By 2050, our knowledge of how the brain works, and our ability to enhance or repair it is so advanced that being able to remember everything and learn new things at an outrageous speed has become commonplace. Most kids are fitted with the latest memory boosting implants to support their learning and this makes education easier than it has ever been. 

“Brain damage as a result of head injury is easily repaired; memory loss is no longer a medical condition, and people suffering from mental illnesses, such as depression, are quickly cured.  The technologies that underpin this have existed in some form since the late 2010s. Memory implants are in fact a natural progression from the connected deep brain stimulation implants of 2018.

“But every technology has another side – a dark side. In 2050, the medical, social and economic impact of memory boosting implants are significant, but they are also vulnerable to exploitation and cyber-abuse. New threats that have appeared in the last decade include the mass manipulation of groups through implanted or erased memories of political events or conflicts, and even the creation of ‘human botnets’. 

“These botnets connect people’s brains into a network of agents controlled and operated by cybercriminals, without the knowledge of the victims themselves.  Repurposed cyberthreats from previous decades are targeting the memories of world leaders for cyber-espionage, as well as those of celebrities, ordinary people and businesses with the aim of memory theft, deletion of or ‘locking’ of memories (for example, in return for a ransom).  

“This landscape is only possible because, in the late 2010s when the technologies began to evolve, the potential future security vulnerabilities were not considered a priority, and the various players: healthcare, security, policy makers and more, didn’t come together to understand and address future risks.”

For more information and the full suite of inspirational and thought-provoking predictions, visit Earth 2050.

Continue Reading

Featured

How load-shedding is killing our cellphone signals

Published

on

Extensive load-shedding, combined with the theft of cell tower backup batteries and copper wire, is placing a massive strain on mobile network providers.

MTN says the majority of MTN’S sites have been equipped with battery backup systems to ensure there is enough power on site to run the system for several hours when local power goes out and the mains go down. 

“With power outages on the rise, these back-up systems become imperative to keeping South Africa connected and MTN has invested heavily in generators and backup batteries to maintain communication for customers, despite the lack of electrical power,” the operator said in a statement today.

However, according to Jacqui O’Sullivan, Executive: Corporate Affairs, at MTN SA, “The high frequency of the cycles of load shedding have meant batteries were unable to fully recharge. They generally have a capacity of six to 12 hours, depending on the site category, and require 12 to 18 hours to recharge.”

An additional challenge is that criminals and criminal syndicates are placing networks across the country at risk. Batteries, which can cost R28 000 per battery and upwards, are sought after on black markets – especially in neighbouring countries. 

“Although MTN has improved security and is making strides in limiting instances of theft and vandalism with the assistance of the police, the increase in power outages has made this issue even more pressing,” says O’Sullivan.

Ernest Paul, General Manager: Network Operations at SA’s leading network provider MTN, says the brazen theft of batteries is an industry-wide problem and will require a broader initiative driven by communities, the private sector, police and prosecutors to bring it to a halt.

“Apart from the cost of replacing the stolen batteries and upgrading the broken infrastructure, communities suffer as the network degrades without the back-up power. This is due to the fact that any coverage gaps need to be filled. The situation is even more dire with the rolling power cuts expected due to Eskom load shedding.”

Loss of services and network quality can range from a 2-5km radius to 15km on some sites and affect 5,000 to 20,000 people. On hub sites, network coverage to entire suburbs and regions can be lost.

Click here to read more about efforts to combat copper theft.

Previous Page1 of 2

Continue Reading

Trending

Copyright © 2018 World Wide Worx