Connect with us

Featured

Traffic must get smarter

Published

on

As our cities grow and get smarter, our streets in turn get busier. TEDDY DAKA, Group CEO, Ansys Limited, believes that in order to control traffic, we have to become smarter.

Without wanting to be accused of national stereotyping, one thing that strikes me every time I visit a new country is how subtly unique each place is when it comes to the way people drive. Sometimes it’s because the rules are simply different – South Africa’s four-way stops are as incomprehensible to some northern Europeans as roundabouts seem to be here. In other ways, it’s just customs that have developed over time – the National Road Traffic Act is very specific about when and where hazard lights should be used, and it’s certainly not to show that you’re slowing down or to say thanks.

One thing everyone involved in traffic management knows, however, is that we have to get smarter. As our cities get bigger and our citizens more mobile, our roads will become more congested and gridlocked unless we can find better solutions for everything from parking to car sharing to public transport. The Gauteng City Region Observatory says that population and population density around Tshwane and Johannesburg is growing faster than the rest of the country, and will soon be on a par with the world’s most packed places.

We know that smart cities and the internet of things (IoT) will be an integral part of our effort to reconcile urban growth with quality of living. But we’re right at the start of figuring out how these ideas will be effectively applied in a country like South Africa.

One area that is relatively unexplored, for example, is the area of in-car telematics. Outside of logistics and the tags used for eTolls, our cars are still pretty dumb and traffic management principles haven’t changed for decades. That’s not to belittle investments made in adding mobile SIM cards to traffic lights, for example, but thanks to the falling cost of data communications and the development of low-bandwidth technologies such as Random Phase Multiple Access (RPMA) radio networks, it’s now entirely feasible to develop large scale, two-way machine-to-machine (M2M) communications for vehicles on our highways and byways.

Such technology can provide traffic managers with real-time data and analytics to optimise the transport network at the macro and micro levels. Predicting congestion and instant accident detection is one part, but so is the ability for commuters to get up-to-the-minute recommendations on routes and the most efficient mode of transport.

M2M communications are a pre-requisite for future transport models such as self-driving cars, which have the Artificial Intelligence (AI) capabilities to organise themselves for optimum travel. Right now at Ansys we’ve been working with international vendors and municipal and national enforcement and roads authorities to understand the kinds of solutions that are possible today.

Through utilising Ingenu’s M2M network technology we’ve developed an in-car IoT device that plug into the diagnostic port on any recently manufactured vehicle and can be used for fleet management, customer safety,  accident alerts, driver behaviour monitoring or law enforcement. Today, insurance companies using this kind of technology can reward the best drivers, while at the same time improving their recovery rates for stolen vehicles.

The next applications for in-car M2M devices will be to build on the kinds of features we see in today’s smartphones. Google Maps can alert you of a traffic incident ahead and advise you to take a different route. Integrating the same kind of location-aware devices into a smart city network will give city authorities the grid-wide ability to dynamically change routes and speed limits.

Law enforcement, too, is an active area of development. We’re using the same devices and our Connected Car platform to create “virtual pounds” for traffic cops in the Middle East. When a vehicle is ordered off the road, the current costs of storing it at a police lot and being liable for damage are much higher than most people realise. Like ankle tags for offenders, on-board devices can put a vehicle under “house arrest”, alerting authorities if an engine is started or the vehicle is moved and reducing the costs of transport, storage and insurance to zero.

There are many other things that are possible – including automating fines for not fastening seatbelts or breaking the speed limit, for example – but also a lot still to be learned and understood. Can we balance smart traffic solutions with the driver’s right to privacy, for example, and is the security of the underlying platform strong enough?

What we do know is that all solutions will be driven by local needs, and with road-related fatalities and commuting times among the worst in the world, South Africa has desperate needs that need innovative solutions.

Continue Reading

Featured

Earth 2050: memory chips for kids, telepathy for adults

An astonishing set of predictions for the next 30 years includes a major challenge to the privacy of our thoughts.

Published

on

Buy 2050, most kids may be fitted with the latest memory boosting implants, and adults will have replaced mobile devices with direct connectivity through brain implants, powered by thought.

These are some of the more dramatic forecasts in Earth 2050, an award-winning, interactive multimedia project that accumulates predictions about social and technological developments for the upcoming 30 years. The aim is to identify global challenges for humanity and possible ways of solving these challenges. The website was launched in 2017 to mark Kaspersky Lab’s 20th birthday. It comprises a rich variety of predictions and future scenarios, covering a wide range of topics.

Recently a number of new contributions have been added to the site. Among them Lord Martin Rees, the UK’s Astronomer Royal, Professor at Cambridge University and former President of the Royal Society; investor and entrepreneur Steven Hoffman, Peter Tatchell, human rights campaigner, along withDmitry Galov, security researcher and Alexey Malanov, malware analyst at Kaspersky Lab.

The new visions for 2050 consider, among other things:

  • The replacement of mobile devices with direct connectivity through brain implants, powered by thought – able to upload skills and knowledge in return – and the impact of this on individual consciousness and privacy of thought.
  • The ability to transform all life at the genetic level through gene editing.
  • The potential impact of mistakes made by advanced machine-learning systems/AI.
  • The demise of current political systems and the rise of ‘citizen governments’, where ordinary people are co-opted to approve legislation.
  • The end of the techno-industrial age as the world runs out of fossil fuels, leading to economic and environmental devastation.
  • The end of industrial-scale meat production, as most people become vegan and meat is cultured from biopsies taken from living, outdoor reared livestock.

The hypothetical prediction for 2050 from Dmitry Galov, security researcher at Kaspersky Lab is as follows: “By 2050, our knowledge of how the brain works, and our ability to enhance or repair it is so advanced that being able to remember everything and learn new things at an outrageous speed has become commonplace. Most kids are fitted with the latest memory boosting implants to support their learning and this makes education easier than it has ever been. 

“Brain damage as a result of head injury is easily repaired; memory loss is no longer a medical condition, and people suffering from mental illnesses, such as depression, are quickly cured.  The technologies that underpin this have existed in some form since the late 2010s. Memory implants are in fact a natural progression from the connected deep brain stimulation implants of 2018.

“But every technology has another side – a dark side. In 2050, the medical, social and economic impact of memory boosting implants are significant, but they are also vulnerable to exploitation and cyber-abuse. New threats that have appeared in the last decade include the mass manipulation of groups through implanted or erased memories of political events or conflicts, and even the creation of ‘human botnets’. 

“These botnets connect people’s brains into a network of agents controlled and operated by cybercriminals, without the knowledge of the victims themselves.  Repurposed cyberthreats from previous decades are targeting the memories of world leaders for cyber-espionage, as well as those of celebrities, ordinary people and businesses with the aim of memory theft, deletion of or ‘locking’ of memories (for example, in return for a ransom).  

“This landscape is only possible because, in the late 2010s when the technologies began to evolve, the potential future security vulnerabilities were not considered a priority, and the various players: healthcare, security, policy makers and more, didn’t come together to understand and address future risks.”

For more information and the full suite of inspirational and thought-provoking predictions, visit Earth 2050.

Continue Reading

Featured

Pizoelectrics: Healthcare’s new gymnasts of gadgetry

Published

on

Healthcare electronics is rapidly deploying for wellness, electroceuticals, and intrusive medical procedures, among other, powered by new technologies. Much of it is trending to diagnostics and treatment on the move, and removing the need for the patient to perform procedures on time. 

Instruments become wearables, including electronic skin patches and implants. The IDTechEx Research report, “Piezoelectric Harvesting and Sensing for Healthcare 2019-2029”, notes that sensors should preferably be self-powered, non-poisonous even on disposal, and many need to be biocompatible and even biodegradable. 

We need to detect biology, vibration, force, acceleration, stress and linear movement and do imaging. Devices must reject bacteria and be useful in wearables and Internet of Things nodes. Preferably we must move to one device performing multiple tasks. 

So is there a gymnast material category that has that awesome versatility? 

Piezoelectrics has a good claim. It measures all those parameters. That even includes biosensors where the piezo senses the swelling of a biomolecule recognizing a target analyte. The most important form of self-powered (one material, two functions) piezo sensing is ultrasound imaging, a market growing at 5.1% yearly. 

The IDTechEx Research report looks at what comes next, based on global travel and interviewing by its PhD level analysts in 2018 with continuous updates.  

Click here to read how Piezo has been reinvented.

Previous Page1 of 2

Continue Reading

Trending

Copyright © 2018 World Wide Worx