Connect with us

Featured

Self-driving taxis will cut accidents by 90%

Published

on

A recent report has revealed that the widespread adoption of autonomous cars and taxis could lead to a revolutionary transformation of cities.

Widespread urban adoption of self-driving vehicles (SDVs) and “robo-taxis,” or self-driving taxis, could result in a 60% drop in the number of cars on city streets, an 80% or greater decrease in tailpipe emissions, and 90% fewer road accidents, according to a new report by The Boston Consulting Group (BCG) prepared in collaboration with the World Economic Forum.

Self-Driving Vehicles, Robo-Taxis, and the Urban Mobility Revolution, released today, builds on earlier research by BCG and the World Economic Forum, including a survey of more than 5,500 consumers in ten countries—the largest global survey on SDVs to date. The report examines four potential scenarios for SDVs in an urban context and describes the possible impact of each one. While broad consumer adoption of SDVs—to which BCG’s research shows there are few barriers—would by itself lead to significant disruption, the real revolution in urban mobility will come with widespread adoption of robo-taxis.

“There is a compelling case to be made for SDVs in cities,” said Nikolaus Lang, a BCG senior partner and report coauthor. “Ride-shared, electric robo-taxis can substantially transform and improve urban transportation and, by direct extension, livability, by providing more people with easier access to mobility, making streets safer, and freeing up space no longer needed for parking. The major players—industry, consumers, and policymakers—are excited and engaged.”

Some 58% of consumers in cities around the world are open to trying out SDVs. Willingness is highest among younger consumers: 63% of those aged 29 or younger are willing to ride in a fully self-driving car, compared with 46% of consumers aged 51 or older.

Acceptance of SDVs is highest in emerging markets. In India, for example, willingness is 85%, while consumers in Japan and the Netherlands are most reluctant (36% and 41%, respectively). Consumers cite the convenience of parking assistance and an increase in productivity while traveling as the top two reasons for interest in SDVs. When asked who should produce SDVs, almost 50% of respondents look to traditional-car manufacturers. Trust in automakers is highest in France, Germany, and Japan; it is weaker in India, the US, and China, where tech companies have high visibility.

Although few consumers have even seen an SDV, their expectations for how SDVs will differ from traditional cars are quite specific. More than 35% expect SDVs to be hybrid vehicles, and another 29% anticipate that they will be electric.

Many consumers are willing to pay a premium of $5,000 or more for a fully self-driving car. In France, India, and Japan, every second consumer is ready to pay more for an SDV. This willingness to pay extra is driven by an economic logic that balances the incremental cost against potential cost savings in other areas, such as lower parking fees, fuel savings, and even lower housing costs if it becomes more convenient to live farther from the more expensive city core.

The research also involved in-depth interviews with 25 urban policymakers in 12 cities. Some 60% of these policymakers expect that by 2025, at least one city will have banned traditional-car ownership, partly as a result of robo-taxi fleets. Another 24% believe that this will happen by 2030. In terms of operating robo-taxi fleets, policymakers clearly see the private sector in the lead and envision a multiplayer setup rather than a monopolistic structure. Numerous trials involving SDVs are already underway in cities as diverse as Singapore, London, and Gothenburg. Gothenburg is currently planning to launch a pilot of 100 SDVs on its ring road in 2017.

In addition to conducting research with consumers and city policymakers, BCG and the World Economic Forum developed four comprehensive scenarios—based on autonomous technology, ride sharing, and electrification—for the city of the future. Here are the scenarios, in order of potential impact:

The Premium Car That Drives Itself. SDVs complement the existing mobility landscape as high-end offerings. This results in a small reduction (about 1%) in the number of vehicles on the streets through limited sharing of self-driving vehicles and fewer accidents—a drop of almost 20%—because SDVs, without human error as a risk factor, are much safer.

SDVs Rule the Streets. In this scenario, SDVs replace most traditional cars but are still primarily privately owned. One in ten SDVs is shared by multiple individuals, and the total number of cars in the city falls by 8%. The number of accidents drops by 55%, and there is a 5% increase in freed-up parking space.

Robo-Taxis Take Over. Robo-taxis are the primary mobility option in the city. The biggest change is a nearly 50% decrease in the number of cars as consumers abandon privately owned vehicles for shared robo-taxis. There are almost 90% fewer accidents, and nearly 40% of parking space is freed up.

The Ridesharing Revolution. Shared robo-taxis are the main mobility mode. Every self-driving taxi now averages 2 passengers instead of the 1.2 assumed to be the average occupancy previously. Ridesharing frees up more parking space (54%) and further lowers the number of cars needed to provide the same level of mobility to the population (59%). Accidents decrease by 87%.

“No single scenario will play out exactly as described, but our analysis makes it clear that the potential benefits for society are huge if SDVs are combined with ride sharing and electrification,” said Michael Rüßmann, a BCG senior partner and report coauthor. “A power train shift from internal-combustion to electric engines is essential if cities want to cut tailpipe emissions, and ride sharing in urban areas is required to reduce the number of vehicles that are on the streets at any given time. Autonomous capabilities are the key to big improvements in road safety. These three factors—ride sharing, autonomous driving, and electrification—reinforce each other to facilitate fast adoption.”

Featured

Money talks and electronic gaming evolves

Computer gaming has evolved dramatically in the last two years, as it follows the money, writes ARTHUR GOLDSTUCK in the second of a two-part series.

Published

on

The clue that gaming has become big business in South Africa was delivered by a non-gaming brand. When Comic Con, an American popular culture convention that has become a mecca for comics enthusiasts, was hosted in South Arica for the first time last month, it used gaming as the major drawcard. More than 45 000 people attended.

The event and its attendance was expected to be a major dampener for the annual rAge gaming expo, which took place just weeks later. Instead, rAge saw only a marginal fall in visitor numbers. No less than 34 000 people descended on the Ticketpro Dome for the chaos of cosplay, LAN gaming, virtual reality, board gaming and new video games. 

It proved not only that there was room for more than one major gaming event, but also that a massive market exists for the sector in South Africa. And with a large market, one also found numerous gaming niches that either emerged afresh or will keep going over the years. One of these, LAN (for Local Area Network) gaming, which sees hordes of players camping out at the venue for three days to play each other on elaborate computer rigs, was back as strong as ever at rAge.

MWeb provided an 8Gbps line to the expo, to connect all these gamers, and recorded 120TB in downloads and 15Tb in uploads – a total that would have used up the entire country’s bandwidth a few years ago.

“LANs are supposed to be a thing of the past, yet we buck the trend each year,” says Michael James, senior project manager and owner of rAge. “It is more of a spectacle than a simple LAN, so I can understand.”

New phenomena, often associated with the flavour of the moment, also emerge every year.

“Fortnite is a good example this year of how we evolve,” says James. “It’s a crazy huge phenomenon and nobody was servicing the demand from a tournament point of view. So rAge and Xbox created a casual LAN tournament that anyone could enter and win a prize. I think the top 10 people got something each round.”

Read on to see how esports is starting to make an impact in gaming.

Previous Page1 of 3

Continue Reading

Featured

Blockchain unpacked

Blockchain is generally associated with Bitcoin and other cryptocurrencies, but these are just the tip of the iceberg, says ESET Southern Africa.

Published

on

This technology was originally conceived in 1991, when Stuart Haber and W. Scott Stornetta described their first work on a chain of cryptographically secured blocks, but only gained notoriety in 2008, when it became popular with the arrival of Bitcoin. It is currently gaining demand in other commercial applications and its annual growth is expected to reach 51% by 2022 in numerous markets, such as those of financial institutions and the Internet of Things (IoT), according to MarketWatch.

What is blockchain?

A blockchain is a unique, consensual record that is distributed over multiple network nodes. In the case of cryptocurrencies, think of it as the accounting ledger where each transaction is recorded.

A blockchain transaction is complex and can be difficult to understand if you delve into the inner details of how it works, but the basic idea is simple to follow.

Each block stores:

–           A number of valid records or transactions.
–           Information referring to that block.
–           A link to the previous block and next block through the hash of each block—a unique code that can be thought of as the block’s fingerprint.

Accordingly, each block has a specific and immovable place within the chain, since each block contains information from the hash of the previous block. The entire chain is stored in each network node that makes up the blockchain, so an exact copy of the chain is stored in all network participants.

As new records are created, they are first verified and validated by the network nodes and then added to a new block that is linked to the chain.

How is blockchain so secure?

Being a distributed technology in which each network node stores an exact copy of the chain, the availability of the information is guaranteed at all times. So if an attacker wanted to cause a denial-of-service attack, they would have to annul all network nodes since it only takes one node to be operative for the information to be available.

Besides that, since each record is consensual, and all nodes contain the same information, it is almost impossible to alter it, ensuring its integrity. If an attacker wanted to modify the information in a blockchain, they would have to modify the entire chain in at least 51% of the nodes.

In blockchain, data is distributed across all network nodes. With no central node, all participate equally, storing, and validating all information. It is a very powerful tool for transmitting and storing information in a reliable way; a decentralised model in which the information belongs to us, since we do not need a company to provide the service.

What else can blockchain be used for?

Essentially, blockchain can be used to store any type of information that must be kept intact and remain available in a secure, decentralised and cheaper way than through intermediaries. Moreover, since the information stored is encrypted, its confidentiality can be guaranteed, as only those who have the encryption key can access it.

Use of blockchain in healthcare

Health records could be consolidated and stored in blockchain, for instance. This would mean that the medical history of each patient would be safe and, at the same time, available to each doctor authorised, regardless of the health centre where the patient was treated. Even the pharmaceutical industry could use this technology to verify medicines and prevent counterfeiting.

Use of blockchain for documents

Blockchain would also be very useful for managing digital assets and documentation. Up to now, the problem with digital is that everything is easy to copy, but Blockchain allows you to record purchases, deeds, documents, or any other type of online asset without them being falsified.

Other blockchain uses

This technology could also revolutionise the Internet of Things  (IoT) market where the challenge lies in the millions of devices connected to the internet that must be managed by the supplier companies. In a few years’ time, the centralised model won’t be able to support so many devices, not to mention the fact that many of these are not secure enough. With blockchain, devices can communicate through the network directly, safely, and reliably with no need for intermediaries.

Blockchain allows you to verify, validate, track, and store all types of information, from digital certificates, democratic voting systems, logistics and messaging services, to intelligent contracts and, of course, money and financial transactions.

Without doubt, blockchain has turned the immutable and decentralized layer the internet has always dreamed about into a reality. This technology takes reliance out of the equation and replaces it with mathematical fact.

Continue Reading

Trending

Copyright © 2018 World Wide Worx