Connect with us

Cars

Nissan unveils ProPILOT

Published

on

Nissan Motor has announced that the new Serena will come equipped with the company’s ProPILOT autonomous drive technology, offering convenience and peace of mind during highway mobility.

ProPILOT is a revolutionary autonomous drive technology designed for highway use in single-lane traffic. Nissan is the first Japanese automaker to introduce a combination of steering, accelerator and braking that can be operated in full automatic mode, easing driver workload in heavy highway traffic and long commutes.

Employing advanced image-processing technology, the car’s ProPILOT system understands road and traffic situations and executes precise steering enabling the vehicle to perform naturally. ProPILOT technology is extremely user-friendly, thanks to a switch on the steering wheel that allows the driver to easily activate and deactivate the system. ProPILOT’s easy-to-understand and fit-to-drive interface includes a personal display showing the operating status.

System Configuration

The accelerator, brakes and steering are controlled based on information obtained through a mono camera equipped with advanced-image processing software. The ProPILOT camera can quickly recognize in three-dimensional depth both preceding vehicles and lane markers.

Functions

Once activated, ProPILOT automatically controls the distance between the vehicle and the preceding vehicle, using a speed preset by the driver (between approximately 30 km/h and 100 km/h). The system also keeps the car in the middle of the highway lane by reading lane markers and controlling steering, even through curves.

If a car in front stops:

The ProPILOT system automatically applies the brakes to bring the vehicle to a full stop. After coming to a full stop, the vehicle will remain in place even if the driver’s foot is off the brake pedal. When ready to resume driving, ProPILOT is activated when the driver touches the switch again or lightly presses the accelerator.

Nissan is carrying out intensive studies of driving conditions in various regions so that ProPILOT will be well suited to the conditions in the markets in which it will be launched. The ProPILOT system equipped on the Serena in Japan was developed in pursuit of an easy-to-use technology for highway driving conditions in Japan.

Making Zero Fatalities a Reality

Nissan is proactively working on vehicle intelligence and vehicle electrification to make its corporate visions of “Zero Emissions” and “Zero Fatalities” a reality. Under “Nissan Intelligent Mobility”, ProPILOT promotes safety and instills confidence in drivers, and it is part of “Nissan Intelligent Driving”.

ProPILOT will be introduced into other vehicles, including the Qashqai in Europe in 2017. There are also plans for the technology to be introduced in the U.S. and China markets. A multi-lane autonomous driving technology will enable automatic lane changes on highways and is planned for introduction in 2018 while autonomous driving on urban roads and in intersections is planned for launch in 2020.

Nissan will advance its leadership in autonomous drive technology by introduction in each market’s core models, further improving safety and pioneering a new era for the automobile.

Cars

Why sports cars make us feel good

Published

on

Forget romance, fine dining or an epic boxset binge – new preliminary research reveals that driving a sports car on a daily basis is among the best ways to boost your sense of wellbeing and emotional fulfilment.

The study measured “buzz moments” – peak thrills that play a vital role in our overall wellness – as volunteers cheered on their favourite football team, watched a gripping Game of Thrones episode, enjoyed a passionate kiss with a loved one or took an intense salsa dancing class. Only the occasional highs of riding a roller coaster ranked higher than the daily buzz of a commute in a sports car.

Working with neuroscientists and designers, Ford brought the research to life with the unique Ford Performance Buzz Car: a customised Ford Focus RS incorporating wearable and artificial intelligence technology to animate the driver’s emotions in real time across the car’s exterior. 

Watch the video here https://youtu.be/AFpt6jziFsU

“A roller coaster may be good for a quick thrill, but it’s not great for getting you to work every day,” said Dr Harry Witchel, Discipline Leader in Physiology. “This study shows how driving a performance car does much more than get you from A to B – it could be a valuable part of your daily wellbeing routine.”

Study participants who sat behind the wheel of a Ford Focus RS, Focus ST or Mustang experienced an average of 2.1 high-intensity buzz moments during a typical commute; this compared with an average of 3 buzz moments while riding on a roller coaster, 1.7 while on a shopping trip, 1.5 each while watching a Game of Thrones episode or a football match, and none at all while salsa dancing, fine dining or sharing a passionate kiss. 

For the research, Ford took one Focus RS and worked with Designworks to create the Buzz Car:

From concept, design and installation to software development and programming, the Buzz Car took 1,400 man-hours to create. Each “buzz moment” experienced by the driver – analysed using a real-time “emotional AI” system developed by leading empathic technology firm Sensum – produces a dazzling animation across almost 200,000 LED lights integrated into the car. The Buzz Car also features:

  • High-performance Zotac VR GO gaming PC
  • 110 x 500-lumen daylight-bright light strips
  • 82 display panels with 188,416 individually addressable LEDs

Driver state research

Researchers at the Ford Research and Innovation Center in Aachen, Germany are already looking into how vehicles can better understand and respond to drivers’ emotions. As part of the EUfunded ADAS&ME project, Ford experts are investigating how in-car systems may one day be aware of our emotions – as well as levels of stress, distraction and fatigue – providing prompts and warnings, and could even take control of the car in emergency situations.

“We think driving should be an enjoyable, emotional experience,” said Dr Marcel Mathissen, research scientist at Ford of Europe. “The driver-state research Ford and its partners are undertaking is helping to lead us towards safer roads and – importantly – healthier driving.”

Activity Buzz Moments *
Roller Coaster 3
Driving 2.1
Shopping 1.7
Game of Thrones 1.5
Football Game 1.5
Kissing 0
Salsa Dancing 0
Dining 0

* Average number of high-intensity buzz moments per participant

Continue Reading

Cars

Car that sees round corners

Published

on

Jaguar Land Rover is leading a £4.7 million (approximately R79 million) project to develop self-driving cars that can ‘see’ at blind junctions and through obstacles.

Britain’s biggest carmaker is leading a project called AutopleX to combine connected, automated and live mapping tech so more information is provided earlier to the self-driving car. This enables automated cars to communicate with all road users and obstacles where there is no direct view, effectively helping them see, so they can safely merge lanes and negotiate complex roundabouts autonomously.

Chris Holmes, Connected and Autonomous Vehicle Research Manager at Jaguar Land Rover said: “This project is crucial in order to bring self-driving cars to our customers in the near future. Together with our AutopleX partners, we will merge our connected and autonomous research to empower our self-driving vehicles to operate safely in the most challenging, real-world traffic situations. This project will ensure we deliver the most sophisticated and capable automated driving technology.”

Jaguar Land Rover is developing fully- and semi-automated vehicle technologies, offering customers a choice of an engaged or automated drive, while maintaining an enjoyable and safe driving experience. The company’s vision is to make the self-driving car viable in the widest range of real-life, on- and off-road driving environments and weather.

AutopleX will develop the technology through simulation and public road testing both on motorways and in urban environments in the West Midlands. Highways England, INRIX, Ricardo, Siemens, Transport for West Midlands and WMG at the University of Warwick join the AutopleX consortium, which was announced as part of Innovate UK’s third round of Connected and Autonomous Vehicle Funding in March 2018.

Continue Reading

Trending

Copyright © 2018 World Wide Worx