Connect with us

Cars

MWC: Ford in the van-guard of autonomous delivery

Published

on

Vans have been a key component in delivery for years now and drones are a relatively new phenomenon. However, in an effort to improve mobility in rural areas, Ford employees have come up with ideas to make the two work together.

For more than half a century, vans have played a key role in deliveries. Drones are a modern phenomenon. But the two could work hand in hand to improve mobility in urban areas in one example of Ford’s vision for the “City of Tomorrow”.

Self-driving vans could quickly and efficiently transport everything from groceries to urgently needed medical supplies on the ground, with drones potentially able to take to the air for the final leg of the journey to reach destinations inaccessible by car, such as high up in a tower block – or where parking would be difficult, impractical, or unsafe.

The innovative “Autolivery” concept, developed by a team of Ford employees for the company’s Last Mile Mobility Challenge, imagines electric self-driving vans used together with drones to pick up and drop off goods and packages in urban areas. The concept can be experienced through virtual reality headsets at Mobile World Congress, the world’s largest gathering for the mobile industry, in Barcelona, as part of Ford’s vision of the “City of Tomorrow”.

The experience showed dinner party preparations, with a missing ingredient quickly ordered and delivered in time to add to the recipe. As new data reveals that motorists in Europe’s cities spent up to 91 hours sitting in congested traffic during 2016, the “Autolivery” service illustrates how new technologies could improve the lives of consumers with smart connected homes, and help to pave the way to a more sustainable future. *

“Ford has at its heart a culture of disruption and innovation designed to come up with solutions that put people first, to save them time, money and aggravation, and also to make our cities easier to navigate and better to live in,” said Ken Washington, vice president, Research and Advanced Engineering, Ford Motor Company.

The Autolivery idea, one of many submitted by Ford employees to tackle the last mile challenge, paid particular attention to the challenge of the “last 15 metres” in goods delivery. Widely considered the most challenging part of the goods delivery process to automate, many companies are working on how to solve the complexity of delivering packages the last 15 metres, or from kerb to door. The pressure to solve this challenge is expected to increase globally in coming years with GDP growth and a rise in local deliveries due to online sales.

“While the scene shown today is not yet possible, ‘Autolivery’ suggests how our ongoing mobility research could enrich our lives in a more sustainable ‘City of Tomorrow’,” said Washington.

“The City of Tomorrow” envisages overcoming mobility challenges in urban environments, including gridlock and air pollution to help people move more easily today and in the future. Roads could be converted into green space and parks, allowing for higher quality of life and healthier communities. The company regularly invites employees, entrepreneurs and start‑ups to develop innovations through hackathons and challenges. “Autolivery” was developed by Shanghai-based Ford designers Euishik Bang, James Kuo and Chelsia Lau who responded to Ford’s Last Mile Mobility Challenge – to come up with mobility solutions for urban areas.

“It’s all about making life in the city easier. The possibility of harnessing autonomous and electric vehicle technology with drones to quickly and easily send and deliver parcels could help to make life better for everyone,” said Bang. Also developed for Last Mile Mobility Challenge, and shown at Mobile World Congress, were the electric rideable platform Carr‑E and the folding electric tricycle TriCiti.

Ford intends to have a fully autonomous, SAE level 4-capable vehicle for commercial application in mobility services such as ride sharing, ride hailing or package delivery fleets in 2021. It also expects continued growth in electrified vehicles offerings, to the point where they outnumber their petrol‑powered counterparts in the next 15 years. Shared modes of transportation will continue to gain popularity and connected communications between vehicles and infrastructure will grow.

“We are challenging ourselves to understand how people live, work and move in urban areas, to inform our research in mobility technologies and solutions,” Washington said.

Cars

Mini embraces innovation

Mini has launched its 2018 models with customisable interior features and major technology upgrades, writes BRYAN TURNER.

Published

on

Mini has never been known as a high-tech car, due to its small form factor being the differentiator. But now the well-known brand has received a long-awaited strategy overhaul, bringing with it a new technology focus. Even the Mini logo underwent a subtle redesign, opting to use negative space to show the gaps in the wings of the logo instead of a raised metal look. This forms part of the new “MINImalism” strategy. 

Mini’s strategy for now and the foreseeable future is to increase automation in its cars.

Connected Drive, pioneered by BMW, allows for an intelligent connection between the car and smartphone. This enables one to check the fuel level, heat the interior and start the onboard navigation, all without having to be near the car, from a smartphone. When one is in the car, calendar events with location data can trigger the onboard navigation to calculate ETAs and time in traffic, offset on real-time data collected through the smartphone’s Internet connection.

We tested it with both the Mini Connected Drive and BMW Connected Drive apps, and both interfaced well with the car. Surprisingly, the BMW Connected Drive app seemed to interface slightly better with the Mini than the Mini Connected Drive app.

While the app is recommended, it’s not required, because the car integrates excellently with Bluetooth-enabled devices. iPhone users are in luck, because the entertainment system includes CarPlay, Apple’s simplified connected car interface software. This allows for music, maps and other CarPlay-enabled apps to be shown directly on the car’s touchscreen ,as they do on the iPhone, save some text-sizing adjustments. 

Pairing the iPhone is as easy as holding down a button on the steering wheel and tapping the car when it appears in the built-in CarPlay menu on the iPhone. No app download is required.

MINImalism runs through the car’s technology. The Mini’s 6.5-inch touch screen control panel shows an image of the car with layman’s terms of what the internal systems are doing, keeping to minimalist design patterns. The new Mini Coopers come standard with a Harman/Kardon 12-speaker setup, which features in the Mini Connected Drive. 

The steering wheel is redesigned, now featuring more buttons to help keep one’s hands on the wheel. The left side of the wheel features cruise control buttons, while volume and call controls are located on the right side. This bears a strong resemblance to the BMW configuration, featuring similarly placed steering controls. 

With all the Mini’s customisations, the company invites consumers to take it further with optional extra.s Mini Yours Customised (yours-customised.mini) is a web platform where one can choose custom side scuttles, custom cockpit facia, customised LED door stills and even a customised door projection light. These parts are either 3D-printed or laser-cut, depending on the material, to the specification outlined on the web app.

As optional extras, one can opt for a wireless charger in the armrest compartment and secondary front USB port for both the driver and front passenger, to charge their phones simultaneously. A SIM card connecting to the 4G/LTE network can be fitted directly into the car, allowing for use of Mini Teleservices and Intelligent Emergency Calling, with automatic vehicle location reporting. The Mini Find Mate is an extra service that uses wireless tags to track items from the car’s onboard system or from the Mini Connected Drive app. This tag can be attached to frequently misplaced items or travel items, like  backpacks, suitcases and briefcases.  

Future Minis are expected to be electric by 2019 in Europe and are expected to arrive in South Africa in mid-2020. This seems realistic, considering that the BMW i3 forms part of the same group. 

Overall, the Mini range has received a subtle yet effective cosmetic and technology overhaul, delivering loads of functionality in a minimalist package.

Continue Reading

Cars

Why SA needs connected taxis

Traffic across South Africa continues to be a headache and digital acceleration may just be the answer in mitigating daily congestion, says CLAYTON NAIDOO, General Manager, Sub-Saharan Africa, Cisco.

Published

on

Creating smart cities and digital workplaces means connecting infrastructure and digitizing transport systems, particularly in the taxi industry. Can you imagine what South Africa roads would looks like in 10-years-time, if taxis were connected?

According to Statistics SA’s 2013 Household Survey, taxi operators transport over 15 million commuters daily.  Around 200,000 minibus taxis, across 2 600 taxi ranks, provide the main mode of transport for 50% of SA’s population earning less than R3 000 per month. 

The impact of the taxi industry on the daily lives of South Africans is huge, research by Transaction Capital, a financial services provider in the taxi industry revealed.   An estimated 70% of people who attend educational institutions make use of taxis, 69% of all South African households use taxis in their transport mix, and a staggering 68% of all public transport trips to work are in taxis. Plus, minibus taxis reach remote places other forms of public transport don’t – the average South African lives within a 5-minute walk of a minibus taxi. 

Sadly, the industry is still faced with challenges when it comes to road congestion, accidents and safety, and with drivers often forced by financial needs to work long hours. But a future where taxis can operate efficiently and profitably, while improving safety and providing a more convenient customer and employee experience, is possible. But it requires a digital business transformation. 

Our cities need to start connecting infrastructure and piloting these digital experiences now. Globally, there will be 380 million connected vehicles on the roads by 2020, but that is only half the battle. The first step toward making the frictionless commute a reality is for local governments to begin investing in technology architectures and physical infrastructure to accelerate connected transportation systems and create workplace innovation. 

On the strategic side, transportation officials can begin by identifying best practice. It is best to first pinpoint a problem that is unique to a city or region. For example, a city with notorious traffic congestion might want to start integrating smart sensors on roadways to alert drivers and connected vehicles in real-time of potential hazards, and possibly prevent accidents before they happen.

How would that look in practice? Let’s take the example of Sipho Ngwenya, a fictional character, from Zola in Soweto, one of the 600 000 people employed in the industry. 

He gets up at 4am everyday to get to the taxi rank where he parks his mini bus overnight. Sipho hopes to be one of the first drivers there to ensure he fills his taxi with commuters, who travel to the northern suburbs of Johannesburg for work and school. 

The earlier he starts transporting people, the better chance he has of generating the daily “rental fee” he pays his boss – the owner of the minibus. If Sipho is even 10 minutes late, the queue of people at the rank may have halved. If his taxi is the last one in the queue, it may not fill up, and he may need to drive around the block to find more commuters. The delay means longer hours for him, his conductor-cum-assistant (guardjie) will have to spend more time calculating and collecting fares, and it will increase his costs – he’ll spend more money on fuel.

Fast forward six-months later, when the Joburg metro area would have implemented the Cisco Connected Mass Transit technology solution to connect the taxi industry. Sipho’s alarm goes off at 4am. He grabs his phone and logs onto the Cisco platform before he jumps out of bed: the weather is clear but there’s been an accident overnight on his route to the rank – he’ll have to take a detour. He checks once again just as he leaves home, and sees that he has time to grab breakfast on his way. 

He is the first driver to arrive at the rank that morning – stress-free and ready to start. The rest of the minibuses are stuck behind the accident. He loads commuters and manages to get all of them to their destinations 10 minutes early, by checking the best routes.  Payments are no longer collected in person – there is now an easy mobile payment option that customers love, especially the young ones. And Sipho no longer needs to search for commuters – they stop his minibus on the road because it is marked as a ‘connected minibus’. This is a smart workplace.

These digital solutions are real and available to the SA taxi world. There are some caveats, though: Cisco’s international experience shows that these solutions are best implemented alongside awareness campaigns for commuters and government incentives to drive adoption, as well as ensuring the regulatory environment is conducive. Luckily, technology itself isn’t too much of a problem: the solutions work with existing IT systems local governments have installed.

Imagine South Africa in a decade. Now imagine a South Africa where traffic congestion is a thing of the past. 

Continue Reading

Trending

Copyright © 2018 World Wide Worx