Connect with us

Featured

More Wi-Fi at FNB branches

Published

on

In an effort to encourage customers to visit their branches and at the same time use digital banking, FNB is extending its free Wi-Fi to banks across South Africa.

Even as FNB encourages customers to make more use of its app and online banking service, it is providing more incentives to visit branches. Its active free Wi-Fi connections reached 383 branches by the end of February 2017, as the bank continues to offer free internet connectivity to customers in its branches.

“By January 2017 over 200 000 customers connected to the internet via free FNB Wi-Fi in branches,” says Lee-Anne van Zyl, CEO of FNB Points of Presence. “The roll out of free Wi-Fi is another value-add which shows our commitment to helping all FNB customers bank digitally. The fundamental aim of this initiative is to offer cheaper banking alternatives for customers through the availability free high speed Wi-Fi. Currently, about 187 FNB branches are connected via internet fibre, which enables connectivity at faster speeds.”

“The process of providing free Wi-Fi is ongoing; however, we aim to steadily increase connectivity across most of branch outlets, especially high capacity branches.”

Over the years FNB has moved to digitise its branches and avail the option of transacting via digital channels or over the counter. This happened in the form of introducing Digital Zones, which enable customers to transact via their online profiles within the branch.

FNB also has dedicated eBankers across 195 select branches that are deployed to assist customers at Digital Zones. The role of eBankers is to assist customers who transact digitally by giving support where necessary.

“We have seen a marked increase in the use of Digital Zones at branches as customers have the option to use online banking, the FNB Banking App or cell phone banking. There’s clearly an appetite for digital banking, but as more customers adopt digital channels we will have to balance this with customers’ education,” adds van Zyl.

Featured

Huawei Mate 20 unveils ‘higher intelligence’

The new Mate 20 series, launching in South Africa today, includes a 7.2″ handset, and promises improved AI.

Published

on

Huawei Consumer Business Group today launches the Huawei Mate 20 Series in South Africa.

The phones are powered by Huawei’s densest and highest performing system on chip (SoC) to date, the Kirin 980. Manufactured with the 7nm process, incorporating the Cortex-A76-based CPU and Mali-G76 GPU, the SoC offers improved performance and, according to Huawei, “an unprecedented smooth user experience”.

The new 40W Huawei SuperCharge, 15W Huawei Wireless Quick Charge, and large batteries work in tandem to provide users with improved battery life. A Matrix Camera System includes a  Leica Ultra Wide Angle Lens that lets users see both wider and closer, with a new macro distance capability. The camera system adopts a Four-Point Design that gives the device a distinct visual identity.

The Mate 20 Series is available in 6.53-inch, 6.39-inch and 7.2-inch sizes, across four devices: Huawei Mate 20, Mate 20 Pro, Mate 20 X and Porsche Design Huawei Mate 20 RS. They ship with the customisable Android P-based EMUI 9 operating system.

“Smartphones are an important entrance to the digital world,” said Richard Yu, CEO of Huawei Consumer BG, at the global launch in London last week. “The Huawei Mate 20 Series is designed to be the best ‘mate’ of consumers, accompanying and empowering them to enjoy a richer, more fulfilled life with their higher intelligence, unparalleled battery lives and powerful camera performance.”

The SoC fits 6.9 billion transistors within a die the size of a fingernail. Compared to Kirin 970, the latest chipset is equipped with a CPU that is claimed to be 75 percent more powerful, a GPU that is 46 percent more powerful and an NPU (neural processing unit) that is 226 percent more powerful. The efficiency of the components has also been elevated: the CPU is claimed to be 58 percent more efficient, the GPU 178 percent more efficient, and the NPU 182 percent more efficient. The Kirin 980 is the world’s first commercial SoC to use the Cortex-A76-based cores.

Huawei has designed a three-tier architecture that consists of two ultra-large cores, two large cores and four small cores. This allows the CPU to allocate the optimal amount of resources to heavy, medium and light tasks for greater efficiency, improving the performance of the SoC while enhancing battery life. The Kirin 980 is also the industry’s first SoC to be equipped with Dual-NPU, giving it higher On-Device AI processing capability to support AI applications.

Read more about the Mate 20 Pro’s connectivity, battery and camera on the next page. 

Previous Page1 of 2

Continue Reading

Featured

How Quantum computing will change … everything?

Research labs, government agencies (NASA) and tech giants like Microsoft, IBM and Google are all focused on developing quantum theories first put forward in the 1970s. What’s more, a growing start-up quantum computing ecosystem is attracting hundreds of millions of investor dollars. Given this scenario, Forrester believes it is time for IT leaders to pay attention.

Published

on

“We expect CIOs in life sciences, energy, defence, and manufacturing to see a deluge of hype from vendors and the media in the coming months,” says Forrester’s Brian Hopkins, VP, principal analyst serving CIOs and lead author of a report: A First Look at Quantum Computing. “Financial services, supply-chain, and healthcare firms will feel some of this as well. We see a market emerging, media interest on the rise, and client interest trickling in. It’s time for CIOs to take notice.”

The Forrester report gives some practical applications for quantum computing which helps contextualise its potential: 

  • Security could massively benefit from quantum computing. Factoring very large integers could break RSA-encrypted data, but could also be used to protect systems against malicious attempts. 
  • Supply chain managers could use quantum computing to gather and act on price information using minute-by-minute fluctuations in supply and demand 
  • Robotics engineers could determine the best parameters to use in deep-learning models that recognise and react to objects in computer vision
  • Quantum computing could be used to discover revolutionary new molecules making use of the petabytes of data that studies are now producing. This would significantly benefit many organisations in the material and life sciences verticals – particularly those trying to create more cost-effective electric car batteries which still depend on expensive and rare materials. 

Continue reading to find out how Quantum computing differs.

Previous Page1 of 3

Continue Reading

Trending

Copyright © 2018 World Wide Worx