Connect with us

Cars

Land Rover demos all-terrain autonomous driving

Published

on

Jaguar Land Rover has demonstrated a range of research technologies that would allow a future autonomous car to drive itself over any surface or terrain.

Jaguar Land Rover’s multi-million pound Autonomous all-terrain driving research project aims to make the self-driving car viable in the widest range of real life, on- and off-road driving environments and weather conditions.

Tony Harper, Head of Research, Jaguar Land Rover, said: “Our all-terrain autonomy research isn’t just about the car driving itself on a motorway or in extreme off-road situations. It’s about helping both the driven and autonomous car make their way safely through any terrain or driving situation.

“We don’t want to limit future highly automated and fully autonomous technologies to tarmac. When the driver turns off the road, we want this support and assistance to continue. In the future, if you enjoy the benefits of autonomous lane keeping on a motorway at the start of your journey, we want to ensure you can use this all the way to your destination, even if this is via a rough track or gravel road.

“So whether it’s a road under construction with cones and a contraflow, a snow-covered road in the mountains or a muddy forest track, this advanced capability would be available to both the driver AND the autonomous car, with the driver able to let the car take control if they were unsure how best to tackle an obstacle or hazard ahead. We are already world-leaders in all-terrain technologies: these research projects will extend that lead still further.”

To enable this level of autonomous all-terrain capability, Jaguar Land Rover’s researchers are developing next-generation sensing technologies that will be the eyes of the future autonomous car. Because the sensors are always active and can see better than the driver, this advanced sensing will ultimately give a vehicle the high levels of artificial intelligence required for the car to think for itself and plan the route it should take, on any surface.

SURFACE IDENTIFICATION AND 3D PATH SENSING research combines camera, ultrasonic, radar and LIDAR sensors to give the car a 360 degree view of the world around it, with sensors so advanced that the car could determine surface characteristics, down to the width of a tyre, even in rain and falling snow, to plan its route.

Tony Harper said: “The key enabler for autonomous driving on any terrain is to give the car the ability to sense and predict the 3D path it is going to drive through. This means being able to scan and analyse both the surface to be driven on, as well as any hazards above and to the sides of the path ahead. This might include car park barriers, tree roots and boulders or overhanging branches, as well as the materials and topography to be driven on.”

Ultrasonic sensors can identify surface conditions by scanning up to five metres ahead of the car, so Terrain Response settings could be automatically changed before the car drives from tarmac to snow, or from grass to sand. This will optimise all-terrain performance, without loss of momentum or control.

To complete the 3D path, branches overhanging a track, or a car park overhead barrier would also need to be identified to determine if the route ahead is clear. Overhead Clearance Assist uses stereo camera technology to scan ahead for overhead obstructions. The driver programmes the system with the vehicle’s height, which can include roof boxes or bicycles, and the car will warn the driver with a simple message in the infotainment touchscreen if there is insufficient clearance.

Sensors could also be used to scan the roughness of the road or track ahead and adjust vehicle speed. TERRAIN-BASED SPEED ADAPTION (TBSA) uses cameras to sense bumpy terrain including uneven and undulating surfaces and washboard roads, potholes and even standing water. It is then intelligent enough to predict the potential impact of these surfaces on the car’s ride and automatically adjust speed to keep passengers comfortable.

Another key element of successful all-terrain autonomous driving is the ability for vehicles to communicate with each other, especially if they are out of sight around a bend or on the other side of an off-road obstacle.

In a world-first off-road demonstration, Jaguar Land Rover has connected two Range Rover Sports together using innovative DSRC (Dedicated Short Range Communications) technology to create an Off-Road Connected Convoy. This wireless vehicle-to-vehicle (V2V) communications system shares information including vehicle location, wheel-slip, changes to suspension height and wheel articulation, as well as All-Terrain Progress Control (ATPC) and Terrain Response settings instantly between the two vehicles.

Tony Harper said: “This V2V communications system can seamlessly link a convoy of vehicles in any off-road environment. If a vehicle has stopped, other vehicles in the convoy will be alerted – if the wheels of drop into a hole, or perhaps slip on a difficult boulder, this information is transmitted to all of the other vehicles. In the future, a convoy of autonomous vehicles would use this information to automatically adjust their settings or even change their route to help them tackle the obstacle.

“Or for the ultimate safari experience, cars following in convoy would be told by the lead car where to slow down and stop for their passengers to take the best photographs.”

Cars

Auto rivals team up for connected car demo

Rivals BMW, Ford and Groupe PSA, maker of Peugeot and Opel cars, have teamed up with the 5G Automotive Association (5GAA), Qualcomm Technologies and Savari for Europe’s first live demonstration of C-V2X direct communication technology operating across vehicles from multiple auto manufacturers.

Published

on

The live demonstration also featured a live showcase of C-V2X direct communication technology operating between passenger cars, motorcycles, and roadside infrastructure. C-V2X is a global solution for vehicle-to-everything (V2X) communication in support of improved automotive safety, automated driving and traffic efficiency.

The demonstration exhibited the road safety and traffic efficiency benefits of using C-V2X for Vehicle-to-Vehicle (V2V) collision avoidance, as well as Vehicle-to-Infrastructure (V2I) connectivity to traffic signals and Traffic Management Centers (TMC). C-V2X was operated using real-time direct communications over ITS spectrum and demonstrated its ability to work without cellular network coverage, and underscores its commercial readiness for industry deployment as early as 2020. Superior performance and cost-effectiveness compared to other V2X technologies, along with forward-compatibility with 5G, make C-V2X direct communications a preferred solution for C-ITS applications.

Six demonstrations were shown including: Emergency Electronic Brake Light, Intersection Collision Warning, Across Traffic Turn Collision Risk Warning, Slow Vehicle Warning and Stationary Vehicle Warning, Signal Phase and Timing / Signal Violation Warning and Vulnerable Road User (pedestrian) Warning. The vehicles involved included two-wheel e-scooters provided by BMW Group, and automotive passenger vehicles provided by Ford, Groupe PSA, and BMW Group, all of which were equipped with C-V2X direct communication technology using the Qualcomm® 9150 C-V2X chipset solution.  V2X software stack and application software, along with roadside infrastructure, were provided by industry leader, Savari.

C-V2X is globally supported by a broad automotive ecosystem, which includes the fast growing 5GAA organization.  The 5GAA involves over 85 global members comprised of many leading automakers, Tier-1 suppliers, software developers, mobile operators, semiconductor companies, test equipment vendors, telecom suppliers, traffic signal suppliers and road operators.  

Cellular modems will be key to the C-V2X deployment in vehicles to support telematics, eCall, connected infotainment and delivering useful driving/traffic/parking information. As C-V2X direct communication functionality is integrated into the cellular modem, C-V2X solutions are expected to be more cost-efficient and economical over competing technologies, and benefit from accelerated attach rates.  C-V2X direct communication field validations are currently underway in Germany, France, Korea, China, Japan and the U.S.

C-V2X currently stands as the only V2X technology based on globally recognized 3rd Generation Partnership Project (3GPP) specifications, with ongoing evolution designed to offer forward compatibility with 5G.  C-V2X also leverages and reuses the upper layer protocols defined by the automotive industry, including the European Telecommunications Standards Institute (ETSI) organization. C-V2X includes two complementary transmission modes: 

  • Direct communication as shown in this demonstration for V2V and V2I use cases
  • V2N network communication, which leverages mobile operators for connectivity and delivers cloud-based services, including automated crash notification (ACN, as mandated by eCall), hazard warnings, weather conditions, green light optimal speed advisory (GLOSA), parking spot location, and remote tele-operation to support automated driving, to name a few.

“This demonstration builds on the successful C-V2X showcase we organised with our members Audi, Ford and Qualcomm in Washington DC in April, said Christoph Voigt, Chairman of 5GAA.

“We are excited to witness the growing momentum behind this life-saving technology and to see our members working together to deploy C-V2X, and to make it hit the road as soon as possible.”  

“The BMW Group introduced the first C-ITS use cases already in 2013 with the market introduction of the BMW i3. Today most of envisaged C-ITS use-cases are already institutionalized. With the implementation of C-V2X, the BMW Group accomplishes the last set of the puzzle with a practical path to C-ITS showing quick benefits,” said Christoph Grote, Senior Vice President Electronics, BMW Group. 

“With its ability to safely and securely connect vehicles, along with its evolution into 5G, C-V2X is integral to Ford’s vision for future transportation in which all cars and infrastructure talk to each other,” said Thomas Lukaszewicz, Manager Automated Driving, Ford of Europe. “We are very encouraged by preliminary test results in Europe and elsewhere which support our belief that C-V2X direct communications has superior V2X communication capabilities.”

“We’re moving forward with seamless communication between cars and their environment for enhancing road safety, as well as our customers’ safety,” said Carla Gohin, Group PSA’s Vice President for Research and Advanced Engineering. “Following the first European C-V2X direct communications demonstration we hosted with Qualcomm Technologies last March, we’re pleased to work with leading automotive and technology companies today to highlight that C-V2X interoperability is a reality.” 

“This demonstration of interoperability between multiple automakers is not only another milestone achieved towards C-V2X deployment, but also further validates the commercial viability and global compatibility of C-V2X direct communications for connected vehicles,” said Enrico Salvatori, senior vice president & president, Qualcomm Europe and MEA. “We look forward in continuing to work alongside leaders in the automotive industry, like the 5GAA, BMW Group, Ford, Groupe PSA and Savari, to help advance the automotive industry’s shift towards a safer, connected and more autonomous future.” 

“As one of the V2X pioneers, our company is extremely pleased to continue to help enable the next step in the V2X revolution that we helped start back in 2008,” said Ravi Puvvala, CEO of Savari. “For the last year and a half, the Savari team has worked diligently alongside the dedicated C-V2X engineers in the 5GAA partnership. The resulting string of increasingly impressive demonstrations is continuing to convince the world that C-V2X will soon be deployed around the world.”

Continue Reading

Cars

Fleet management in 360

Published

on

An on-board dual camera system from global fleet management vehicle recovery and insurance telematics provider, Cartrack, reduces the costs of managing vehicle fleets, while creating new ways to motivate drivers and improve their on-the-road performance.

Historically, commercial drivers within fleets have been far removed from active management and oversight, with limited tools available in helping fleet owners understand how their drivers actually behave on the road. This lack of visual tracking ability has seen fleet managers struggle to achieve meaningful driver skills development, while also leaving companies vulnerable to poor operational performance and financial losses resulting from accidents.

Cartrack’s Drive Vision system is dramatically changing this status quo.

Drive Vision is an on-board dual camera system that records video footage with a 120-degree exterior view of the road ahead, and a 160-degree view inside the vehicle cab. Not only can fleet managers actively monitor all the footage that they wish, the system also records specific events such as speeding, harsh braking or an unforeseen action from a third-party.

Drive Vision’s video is continuously captured and then made available to users in two ways. The footage is either buffered in the unit’s memory card for up to five days, and selected time slots can be downloaded by the user via a web interface. Alternatively, footage is also automatically downloaded to the system when specific events occur, such as speeding or a collision.  The captured footage is stored at a web address and is immediately accessible to the client at any time. In addition, the data centre’s driver exception reporting mechanism can review the footage against a client’s pre-determined driver behaviour stipulations, creating a balanced and flexible driver performance assessment tool.

Cartrack CEO, Andre Ittmann, notes why Drive Vision is so useful for companies.

“There are two key strategic benefits to the technology.  Firstly, the company has a clear visual record of events in the case of an accident or legal dispute. Achieving this kind of detailed view hasn’t been possible before, and it can dramatically reduce the costs around incidents and accidents, on an ongoing basis. Secondly, Drive Vision is a highly functional, event-based coaching system. It therefore allows fleet managers to develop a culture that rewards excellent or improved performance, while also giving them the power to actively close skills gaps. “

Ittmann also notes that fleet video footage allows the company to monitor and manage aspects of its service and market performance, including the driver’s ability to access a work site, thereby ensuring timeous arrivals at designated locations and the ability to oversee passenger count and conduct.

Ittmann concludes that Drive Vision offers untold long-term advantages for companies.

“Beyond simply gaining a more efficient means to discipline errant drivers, Drive Vision also empowers fleet managers to proactively implement measures that will result in long-term benefits for their company. Ultimately, the company can also reduce costs related to driver mismanagement while simultaneously improving a driver’s skills and their performance on the road.”

Continue Reading

Trending

Copyright © 2018 World Wide Worx