Connect with us

Cars

Kia launches plug-in hybrid

Published

on

KIA Motors recently unveiled a new plug-in hybrid, the Niro, at the Geneva International Motor Show. The new derivative combines high versatility and crossover design appeal with maximum fuel efficiency from its new plug-in hybrid powertrain.

The Niro Plug-in Hybrid will go on sale across Europe during Q3 2017, pairing an economical 1.6-litre GDI (gasoline direct injection) engine with a 8.9kWh high-capacity lithium-polymer battery pack. The latest addition to KIA’s hybrid crossover range substantially reduces emissions over the more conventional Niro hybrid – engineers are targeting CO2 emissions below 30 g/km (combined, New European Driving Cycle) and a zero-emissions pure-electric driving range of over 55 kilometres. Final electric range and CO2 emissions figures will be published closer to the car’s on-sale date.

Michael Cole, Chief Operating Officer, KIA Motors Europe, commented: “Annual sales of plug-in hybrid models in Europe are expected to grow to more than 600,000 units by the end of 2023, while the crossover market is also forecast to expand in the coming years. There is a clear demand from customers for a vehicle which combines the practicality and ‘cool’ image of a compact crossover with the ultra-low emissions of an advanced plug-in powertrain. The Niro Plug-in Hybrid will be the only car on the market to offer this combination.”

“The Niro Plug-in Hybrid is one of the latest low-emissions cars from KIA which will help the company achieve its global target for 2020 – to improve fuel efficiency by 25% compared with 2014 levels.”

The Niro Plug-in Hybrid is one of two low-emissions vehicles unveiled by KIA at the Geneva International Motor Show, alongside the new Optima Sportswagon Plug-in Hybrid.

Engineers targeting 55-kilometre plus pure-electric range and sub 30 g/km CO2

The Niro Plug-in Hybrid offers buyers a convincing alternative to compact crossovers powered by traditional petrol or diesel internal combustion engines. The car gives owners the opportunity to complete short journeys and daily commutes with zero emissions and lower running costs.

At the heart of the Niro’s new plug-in powertrain is a high-capacity 8.9 kWh lithium-polymer battery pack, growing in size from the 1.56 kWh battery pack found in KIA’s hybrid crossover. The new battery pack is paired with a more powerful 44.5 kW electric motor (offering almost 40% more power, up from 32 kW) compared to the Hybrid model.

The battery and electric motor are paired with the Niro’s efficient 1.6-litre ‘Kappa’ four-cylinder GDI engine, which independently produces 77 kW and 147 Nm torque. The total power and torque output for the Niro Plug-in Hybrid’s powertrain will be 104 kW and 265 Nm, enabling the new model to accelerate from 0 to 100 km/h in 10.8 seconds (0.7 seconds quicker than the standard Niro).

With greater capacity and electric power output, KIA engineers are targeting a pure-electric driving range of over 55 km. While the standard Niro hybrid emits just 88 g/km of CO2 in its most efficient configuration, emissions for the Plug-in Hybrid model will drop significantly, to below 30 g/km (combined, New European Driving Cycle).

Power is applied to the road through the Niro’s six-speed double-clutch transmission (6DCT), allowing drivers to shift gears for themselves for a more immediate, more entertaining drive than other hybrid models equipped with a traditional electronic continuously-variable transmission (e-CVT). The 6DCT is paired with a Transmission-Mounted Electric Device (TMED), which allows the full output of both the engine and electric motor to be transferred in parallel through the transmission, with a minimal loss of energy. This differs from the power-split systems typical of an e-CVT hybrid, which converts a portion of engine output for delivery through the electric motor, resulting in power losses from energy conversion.

Energy-harvesting and predictive driving assistant technologies

The Niro Plug-in Hybrid provides owners with a range of technologies to enhance battery efficiency and improve the car’s range – in zero-emissions electric mode, and when the 1.6-litre engine is in use.

Regenerative braking technology allows the Niro to harvest kinetic energy and recharge the battery pack while coasting or braking, while a new Eco Driving Assistant System (Eco DAS) provides drivers with intelligent guidance on how to drive more efficiently under current conditions. Eco DAS includes Coasting Guide Control (CGC) and Predictive Energy Control (PEC), enabling drivers to maximise fuel mileage by suggesting when to coast or brake.

CGC alerts drivers as to the best time to lift off the accelerator and coast towards a junction, allowing the battery to regenerate under engine deceleration. Operating at certain speeds when a navigation destination is set, it alerts drivers when to coast via a small icon in the instrument cluster as well as an unobtrusive audible warning.

PEC uses the navigation and cruise control systems to anticipate topographical changes – inclines and bends – in the route ahead. It uses this information to determine when best to recharge the battery pack, or to direct stored energy to the wheels and actively manage energy flow accordingly. For example, if it detects an uphill incline coming up, the system may choose to retain more electrical energy to provide greater battery assistance climbing the hill. Conversely, if PEC detects an upcoming opportunity to coast downhill, it may choose to discharge some electrical energy ahead of time, enhancing short-term engine efficiency in the knowledge that it can recharge soon.

Niro retains crossover versatility with efficient powertrain packaging

The KIA Niro was engineered from the very start to accommodate a specific range of hybrid powertrains. The introduction of a plug-in hybrid powertrain therefore has minimal effect on packaging and versatility.

The Niro Plug-in Hybrid’s high-capacity battery pack is located beneath the floor of the 324 litre (VDA) boot and beneath the rear seat bench. This allows the new derivative to offer buyers greater practicality than other C-segment plug-in hybrid hatchback models, while space in the cabin of the Niro remains unaffected.

There is a dedicated space beneath the boot floor to store the Niro Plug-in Hybrid’s charging cable when not in use.

The Niro Plug-in Hybrid will follow its Hybrid sibling in offering an optional Towing Pack – rare amongst cars in the hybrid class – allowing owners to tow braked loads of up to 1,300 kg.

Plug-in Hybrid design and in-car safety and convenience technologies

The exterior and interior design of the KIA Niro Plug-in Hybrid has been adapted to differentiate the car from the existing Niro hybrid.

On the outside of the car, the Niro Plug-in Hybrid features a new satin chrome grille surround, as well as special chrome brightwork with a clean metallic-blue finish, applied to thin ‘blades’ in the front and rear bumpers. The Plug-in Hybrid model is available with 16-inch alloy wheels, engineered to reduce wind resistance, as well as new full-LED headlamps and dedicated ‘Eco Plug-in’ badging.

The interior of the Niro Plug-in Hybrid is upholstered in single-tone black leather, or two-tone light grey and black leather, finished with blue stitching, as well as a new blue surround for the dashboard air vents. The new derivative features a new 7.0-inch full-TFT driver instrument cluster, displaying key information about the powertrain – such as the battery’s state of charge – as well as offering suggestions for a more efficient driving style.

The dashboard is fitted with KIA’s latest 8-inch touchscreen infotainment and navigation system, configured for the Plug-in Hybrid model to display current electric-only range and the location of nearby charging stations. The infotainment system provides owners with maximum smartphone integration, offering Android Auto™ and Apple CarPlay™. KIA Connected Services powered by TomTomTM provides live traffic updates, weather forecasts and, in certain markets, speed camera alerts. The new Plug-in Hybrid model continues to offer buyers the Niro’s wireless smartphone charger, letting users charge their mobile devices on the move. A powerful JBL® premium sound system is also available, with Clari-Fi technology to restore the original sound of music that may be lost during the digital audio compression process.

The Niro Plug-in Hybrid offers buyers the same varied range of active safety technologies designed to avoid or mitigate the effects of a collision. As standard, the car is equipped with KIA Vehicle Stability Management (VSM) for maximum stability under braking and cornering. If VSM detects a loss of traction, it uses the car’s Electronic Stability Control (ESC) system and the electric motor-driven power steering to help the driver retain control. Other standard active hazard-avoidance technologies available to Niro Plug-in Hybrid buyers include, Autonomous Emergency Braking* (Forward Collision-Avoidance Assist), Lane Keeping Assist, and Driver Attention Warning. Optional safety technologies include Smart Cruise Control, Blind-Spot Collision Warning and Rear Cross-Traffic Collision Warning.

Cars

Why sports cars make us feel good

Published

on

Forget romance, fine dining or an epic boxset binge – new preliminary research reveals that driving a sports car on a daily basis is among the best ways to boost your sense of wellbeing and emotional fulfilment.

The study measured “buzz moments” – peak thrills that play a vital role in our overall wellness – as volunteers cheered on their favourite football team, watched a gripping Game of Thrones episode, enjoyed a passionate kiss with a loved one or took an intense salsa dancing class. Only the occasional highs of riding a roller coaster ranked higher than the daily buzz of a commute in a sports car.

Working with neuroscientists and designers, Ford brought the research to life with the unique Ford Performance Buzz Car: a customised Ford Focus RS incorporating wearable and artificial intelligence technology to animate the driver’s emotions in real time across the car’s exterior. 

Watch the video here https://youtu.be/AFpt6jziFsU

“A roller coaster may be good for a quick thrill, but it’s not great for getting you to work every day,” said Dr Harry Witchel, Discipline Leader in Physiology. “This study shows how driving a performance car does much more than get you from A to B – it could be a valuable part of your daily wellbeing routine.”

Study participants who sat behind the wheel of a Ford Focus RS, Focus ST or Mustang experienced an average of 2.1 high-intensity buzz moments during a typical commute; this compared with an average of 3 buzz moments while riding on a roller coaster, 1.7 while on a shopping trip, 1.5 each while watching a Game of Thrones episode or a football match, and none at all while salsa dancing, fine dining or sharing a passionate kiss. 

For the research, Ford took one Focus RS and worked with Designworks to create the Buzz Car:

From concept, design and installation to software development and programming, the Buzz Car took 1,400 man-hours to create. Each “buzz moment” experienced by the driver – analysed using a real-time “emotional AI” system developed by leading empathic technology firm Sensum – produces a dazzling animation across almost 200,000 LED lights integrated into the car. The Buzz Car also features:

  • High-performance Zotac VR GO gaming PC
  • 110 x 500-lumen daylight-bright light strips
  • 82 display panels with 188,416 individually addressable LEDs

Driver state research

Researchers at the Ford Research and Innovation Center in Aachen, Germany are already looking into how vehicles can better understand and respond to drivers’ emotions. As part of the EUfunded ADAS&ME project, Ford experts are investigating how in-car systems may one day be aware of our emotions – as well as levels of stress, distraction and fatigue – providing prompts and warnings, and could even take control of the car in emergency situations.

“We think driving should be an enjoyable, emotional experience,” said Dr Marcel Mathissen, research scientist at Ford of Europe. “The driver-state research Ford and its partners are undertaking is helping to lead us towards safer roads and – importantly – healthier driving.”

Activity Buzz Moments *
Roller Coaster 3
Driving 2.1
Shopping 1.7
Game of Thrones 1.5
Football Game 1.5
Kissing 0
Salsa Dancing 0
Dining 0

* Average number of high-intensity buzz moments per participant

Continue Reading

Cars

Car that sees round corners

Published

on

Jaguar Land Rover is leading a £4.7 million (approximately R79 million) project to develop self-driving cars that can ‘see’ at blind junctions and through obstacles.

Britain’s biggest carmaker is leading a project called AutopleX to combine connected, automated and live mapping tech so more information is provided earlier to the self-driving car. This enables automated cars to communicate with all road users and obstacles where there is no direct view, effectively helping them see, so they can safely merge lanes and negotiate complex roundabouts autonomously.

Chris Holmes, Connected and Autonomous Vehicle Research Manager at Jaguar Land Rover said: “This project is crucial in order to bring self-driving cars to our customers in the near future. Together with our AutopleX partners, we will merge our connected and autonomous research to empower our self-driving vehicles to operate safely in the most challenging, real-world traffic situations. This project will ensure we deliver the most sophisticated and capable automated driving technology.”

Jaguar Land Rover is developing fully- and semi-automated vehicle technologies, offering customers a choice of an engaged or automated drive, while maintaining an enjoyable and safe driving experience. The company’s vision is to make the self-driving car viable in the widest range of real-life, on- and off-road driving environments and weather.

AutopleX will develop the technology through simulation and public road testing both on motorways and in urban environments in the West Midlands. Highways England, INRIX, Ricardo, Siemens, Transport for West Midlands and WMG at the University of Warwick join the AutopleX consortium, which was announced as part of Innovate UK’s third round of Connected and Autonomous Vehicle Funding in March 2018.

Continue Reading

Trending

Copyright © 2018 World Wide Worx