Connect with us

Featured

Designing at the speed of thought

Published

on

Manufacturing and design are two industries where small companies can take on large enterprises. However, in order to do this, there is a constant pressure to innovate and review their development processes, writes CHRIS BUCHANAN, Dell Client Solutions Director.

Manufacturing and design are two of the rare industries where small companies have the ability to take on large corporations globally and vice versa. In this climate, the harsh realities of business are exposed and the importance of a competitive advantage is amplified. As a result, the ongoing competitive pressure drives organisations to constantly review their development processes and come up with new ways to innovate and create; at the end of the day, nobody wants to get left behind.

Rapid Product Development (RPD) plays a crucial role in these industries as it decreases the time it takes for products to get to market and also provides businesses with the opportunity to create better, innovative products. Efficiency is so often seen as a metric of success – the quicker a company can launch its product and subsequently get it to the end-user, the greater chance it has of being successful. In an “always on” world, launching first can help capture the attention of an audience, secure publicity, assist promotion and generate early sales.

Evolution of design

The way products are manufactured, designed and brought to market has evolved more rapidly in the last decade than even before. From drawing boards to smart desks, advancements in technology have had a profound impact across all stages of the production process. In fact, for many companies the entire process – from initial concept development and design, to market research, product development, production and marketing – has changed entirely.

Most recently, modernisations such as using the concepts of ‘Big Data’ to conduct social media analysis across millions of on-line conversations have come to the fore as a new way to gain initial product insight, and gain a competitive advantage. This is an example of something which would have never crossed the minds of manufacturers a mere decade ago. In particular, design solutions have been created to respond to traditional problems with form usability and physical ergonomics – whether the end product be furniture, cars, clothing or even hairbrushes!

While computers provide an established means of producing design plans and drawings, translating these ideas can be a time-consuming process. Consequently, workstations and the software they run need to be purpose-built and tailored specifically for industries to undertake this task. For example, Dell Precision workstations are designed & tested to support applications such as SOLIDWORKS and Auto-desk Design Suite to enable manufacturers and designers to create comprehensive 3D rendered models of products and solutions.

These photo-realistic renders can then be used in pitches and meetings to secure investment. They can be used in marketing presentations and campaigns to showcase the solution and build stakeholder interest before production has even begun. The forward-thinking technology in Dell Precision workstations and Auto-desk Design Suite make ground-breaking achievements, such as Kenguru’s development of the first ever electronic vehicle for wheelchair users, possible.

The ability to provide these detailed model simulations should not be underestimated as they provide businesses with the most accurate and comprehensive depiction of products. It can allow any errors to be stamped out, and subsequently increase the production quality. Furthermore, software-agnostic and Independent Software Vendor (ISV) certification helps boost productivity and efficiency during the development process as it allows businesses to customise their workstations to best suit their individual needs. It gives workers peace of mind when using often complex, high performance applications to create.

The power of prototypes

As competition gets fiercer, for many businesses, the expensive and time-consuming process of producing physical prototypes is phasing out. Much of this change can be attributed to the latest developments in High Performance Computing (HPC), as it offers the ability to switch from traditional physical to virtual prototyping. Organisations can now run huge complex simulations in short timescales whilst simultaneously increasing the quality of the products being designed. This allows better products to hit the market faster.

Developments such as HPC allow the efficient testing of millions of subtle design variations at a fraction of the previous cost. A great example of this optimisation is the virtual prototyping that the Emirates New Zealand sailing team undertook when testing its boat for the America’s Cup using Dell’s HPC cluster. This revolutionised the way the team prepared for the competition as it allowed the boat to be fully optimised and tested in a range of scenarios without the need to physically build various prototypes. As a result, it dramatically reduced the cost of producing the boat and perhaps most importantly, accelerated its time-to-market.

The third dimension

Another factor transforming the way in which products are developed is the colossal rise in 3D printing and scanning technology, which shows no signs of slowing down. According to Gartner, the worldwide shipment of 3D printers is expected to grow by 98 percent in 2015, followed by a predicted double of unit shipments in 2016.

3D printers give manufactures the power to develop, test and verify products quicker than the traditional prototype modelling methods. In fact, in some cases, 3D printing and the latest scanning technology aids in the design and production of components which were impossible to manufacture previously. ATOS scanners from GOM can scan product surfaces and the data copied in a 3D printer, enabling edits and customisations to be made for duplications. With solutions like this, the time-to-market implications can be huge, with increases and improvements in product quality and the speed and frequency of design modifications.

When competition is intense and margins are being squeezed, the capability to make manufacturing design iterations continuously is a huge competitive advantage in this day and age. This fact is further illustrated in a recent report by IDC, which states that the 3D printing revolution is now being utilised regularly in business applications – everything is being affected, from medical bone replacements to NASA telescopes, clothing to confectionery.

Looking ahead

As design and manufacturers evolve with the introduction of technologies such as the “smart desk” and virtual reality, product development will get faster and the quality of products will continue to improve. Progress will undoubtedly be made in 3D printing, expanding the scope of materials that can be printed to not only include plastic and metal but also electronics and rubber. The manufacturing possibilities are endless, and enable quicker product development especially when it comes to the latest and greatest innovations – such as wearable technologies. Designers and manufacturers will have the ability to create a host of new prototypes that were previously off limits, but arguably the biggest beneficiaries will be small businesses. By producing their own in-house pieces, the dependency on large supply chains will decrease whilst costs savings will increase.

In today’s global marketplace, time is money. We often hear from our customers that translating concepts to reality can be a time-consuming and frustrating process. Manufacturers need the right tools as an enabler to design at the speed of thought, once they have this, they are able to improve processes, maximise productivity, and enable opportunities for innovation and design creativity. Tools like Dell Precision workstations have the ability to give manufacturers these added benefits on a silver platter. How they put these benefits to use is up to them.

 

Cars

Auto rivals team up for connected car demo

Rivals BMW, Ford and Groupe PSA, maker of Peugeot and Opel cars, have teamed up with the 5G Automotive Association (5GAA), Qualcomm Technologies and Savari for Europe’s first live demonstration of C-V2X direct communication technology operating across vehicles from multiple auto manufacturers.

Published

on

The live demonstration also featured a live showcase of C-V2X direct communication technology operating between passenger cars, motorcycles, and roadside infrastructure. C-V2X is a global solution for vehicle-to-everything (V2X) communication in support of improved automotive safety, automated driving and traffic efficiency.

The demonstration exhibited the road safety and traffic efficiency benefits of using C-V2X for Vehicle-to-Vehicle (V2V) collision avoidance, as well as Vehicle-to-Infrastructure (V2I) connectivity to traffic signals and Traffic Management Centers (TMC). C-V2X was operated using real-time direct communications over ITS spectrum and demonstrated its ability to work without cellular network coverage, and underscores its commercial readiness for industry deployment as early as 2020. Superior performance and cost-effectiveness compared to other V2X technologies, along with forward-compatibility with 5G, make C-V2X direct communications a preferred solution for C-ITS applications.

Six demonstrations were shown including: Emergency Electronic Brake Light, Intersection Collision Warning, Across Traffic Turn Collision Risk Warning, Slow Vehicle Warning and Stationary Vehicle Warning, Signal Phase and Timing / Signal Violation Warning and Vulnerable Road User (pedestrian) Warning. The vehicles involved included two-wheel e-scooters provided by BMW Group, and automotive passenger vehicles provided by Ford, Groupe PSA, and BMW Group, all of which were equipped with C-V2X direct communication technology using the Qualcomm® 9150 C-V2X chipset solution.  V2X software stack and application software, along with roadside infrastructure, were provided by industry leader, Savari.

C-V2X is globally supported by a broad automotive ecosystem, which includes the fast growing 5GAA organization.  The 5GAA involves over 85 global members comprised of many leading automakers, Tier-1 suppliers, software developers, mobile operators, semiconductor companies, test equipment vendors, telecom suppliers, traffic signal suppliers and road operators.  

Cellular modems will be key to the C-V2X deployment in vehicles to support telematics, eCall, connected infotainment and delivering useful driving/traffic/parking information. As C-V2X direct communication functionality is integrated into the cellular modem, C-V2X solutions are expected to be more cost-efficient and economical over competing technologies, and benefit from accelerated attach rates.  C-V2X direct communication field validations are currently underway in Germany, France, Korea, China, Japan and the U.S.

C-V2X currently stands as the only V2X technology based on globally recognized 3rd Generation Partnership Project (3GPP) specifications, with ongoing evolution designed to offer forward compatibility with 5G.  C-V2X also leverages and reuses the upper layer protocols defined by the automotive industry, including the European Telecommunications Standards Institute (ETSI) organization. C-V2X includes two complementary transmission modes: 

  • Direct communication as shown in this demonstration for V2V and V2I use cases
  • V2N network communication, which leverages mobile operators for connectivity and delivers cloud-based services, including automated crash notification (ACN, as mandated by eCall), hazard warnings, weather conditions, green light optimal speed advisory (GLOSA), parking spot location, and remote tele-operation to support automated driving, to name a few.

“This demonstration builds on the successful C-V2X showcase we organised with our members Audi, Ford and Qualcomm in Washington DC in April, said Christoph Voigt, Chairman of 5GAA.

“We are excited to witness the growing momentum behind this life-saving technology and to see our members working together to deploy C-V2X, and to make it hit the road as soon as possible.”  

“The BMW Group introduced the first C-ITS use cases already in 2013 with the market introduction of the BMW i3. Today most of envisaged C-ITS use-cases are already institutionalized. With the implementation of C-V2X, the BMW Group accomplishes the last set of the puzzle with a practical path to C-ITS showing quick benefits,” said Christoph Grote, Senior Vice President Electronics, BMW Group. 

“With its ability to safely and securely connect vehicles, along with its evolution into 5G, C-V2X is integral to Ford’s vision for future transportation in which all cars and infrastructure talk to each other,” said Thomas Lukaszewicz, Manager Automated Driving, Ford of Europe. “We are very encouraged by preliminary test results in Europe and elsewhere which support our belief that C-V2X direct communications has superior V2X communication capabilities.”

“We’re moving forward with seamless communication between cars and their environment for enhancing road safety, as well as our customers’ safety,” said Carla Gohin, Group PSA’s Vice President for Research and Advanced Engineering. “Following the first European C-V2X direct communications demonstration we hosted with Qualcomm Technologies last March, we’re pleased to work with leading automotive and technology companies today to highlight that C-V2X interoperability is a reality.” 

“This demonstration of interoperability between multiple automakers is not only another milestone achieved towards C-V2X deployment, but also further validates the commercial viability and global compatibility of C-V2X direct communications for connected vehicles,” said Enrico Salvatori, senior vice president & president, Qualcomm Europe and MEA. “We look forward in continuing to work alongside leaders in the automotive industry, like the 5GAA, BMW Group, Ford, Groupe PSA and Savari, to help advance the automotive industry’s shift towards a safer, connected and more autonomous future.” 

“As one of the V2X pioneers, our company is extremely pleased to continue to help enable the next step in the V2X revolution that we helped start back in 2008,” said Ravi Puvvala, CEO of Savari. “For the last year and a half, the Savari team has worked diligently alongside the dedicated C-V2X engineers in the 5GAA partnership. The resulting string of increasingly impressive demonstrations is continuing to convince the world that C-V2X will soon be deployed around the world.”

Continue Reading

Featured

Win a Poster Heater with Gadget and Takealot.com

This winter Gadget and Takealot.com are giving away three Poster Heaters, which look like posters but become heaters when you plug them in.

Published

on

Three Gadget readers will each win a unit, valued at R550 each. To enter, follow @GadgetZA and @Takealot on Twitter and tell us on the @GadgetZA account how many Watts the heater consumes.

What’s the big deal about these heaters? Many of us are struggling to keep the balance between soaring electricity costs and the need to keep warm this winter.

However, the recently launched Poster Heater by EasyHeat and distributed in South Africa by Takealot.com is not only one of the most cost effective electric heaters currently on the market, it is also easy to setup and use.

As the name indicates, it is a poster similar to one you would hang on a wall. But, plug it in and it turns into a 300 Watt heater. The Poster Heater isn’t designed to heat hallways or large rooms, but rather smaller ones like a bedroom or a baby’s nursery or a dressing room.

It uses radiant heating, which means that it heats up in a couple of minutes and the heat is directed at the objects or people around it, quickly taking the chill out of the air and providing a comfortable ambient temperature.

The other advantage of radiant heating is that it doesn’t dry out the air like infrared or gas heaters. Users also don’t have to worry about their children or pets getting too close to it because, even though it gets hot, it can be touched.

To enter the competition follow the steps below:

Competition entry details:

1. Follow @GadgetZA and @Takealot on Twitter. (We will ONLY be accepting entires via Twitter, so please don’t enter through the comments section of this article.)

2. Tell us on Twitter, via @GadgetZA, mentioning @Takealot in your posting, how many Watts the Poster Heater consumes.

cleardot.gif3. The competition closes on 31 July 2018.

4. Winners will be notified via Twitter on 1 August and Takealot.com will be in touch to organise delivery.

5. The competition is only open to South African residents.

Continue Reading

Trending

Copyright © 2018 World Wide Worx