Connect with us

Africa News

Dell expands solar schools

Published

on

Dell has announced that it will be expanding its solar-powered Learning Labs across South Africa to include new sites in Cape Town, Johannesburg and Sedibeng.

In conjunction with a Think Tank discussing technology in education and classrooms of the future at Brescia House School today, Dell today announced that it will expand its solar-powered Learning Labs across South Africa. This includes new sites in Cape Town, Johannesburg and Sedibeng that will be operational by March 2015. The expansion follows a successful pilot in 2013, and Dell will now have nine labs providing direct technology access to more than 3,000 underprivileged students in communities where technology infrastructure is limited.

There are 72 million children worldwide who are not in school and lack access to facilities, teachers and the technology they need for a better education. Dell believes that access to education and technology is not a luxury, but a necessity.

“There are 72 million children worldwide who are not in school and lack access to facilities, teachers and the technology they need for a better education,” said Michael Collins, vice president and general manager of EMEA Emerging Markets, Dell. “Technology plays such an important role in the world today and it’s critical for all young people to firstly have access to technology and secondly to gain practical experience and know-how. Ultimately Dell is committed to breaking down the barriers of IT literacy and we believe access to education and technology is not a luxury, but a necessity.”

The Dell solar-powered Learning Labs are comprised of a standard shipping container that is converted into a computer classroom, and because access to electricity is a big barrier in Africa, Dell has designed the labs to harness the power from the sun to power the technology and internet connectivity for these students.

Each lab contains one server with Microsoft Multipoint Server and/or VWorkspace, used by the teacher, and networks to the 10 zero or thin-client workstations lining the sides of the container. All users are then able to access a local internet service, which is paid for by Dell. The setup is also highly efficient, with each workstation requiring just 3 – 5 watts of power, as opposed to 150 watts for a typical PC.

Dell has also made several improvements to the design of the labs, based on learnings from the pilot. The labs now have increased computing power in order to further enable children in STEM (Science, Technology, Engineering and Mathematics) subjects including coding and graphics works. The new labs have been built with fresh air-cooled servers, a better solution for hotter climates, and Dell has also brought in a new partner, Sunpower, to provide solar power for eight of the labs.

Dell solar-powered Learning Labs are made possible by Dell’s Youth Learning program, which seeks to close the learning gap by partnering directly with non-profits to provide innovative technology solutions, charitable donations and expertise to address challenges faced by underserved youth around the world where Dell operates. The labs are located in Cape Town, Johannesburg and Sedibeng and will be operational by the end of March 2015. Dell global Youth Learning projects include China, India, Morocco and the Philippines.

“We are delighted to be enabling these important conversations with top education leaders in South Africa today and are excited to discuss actionable ideas to improve key challenges in education technology in the area. Dell Learning Labs have afforded thousands of school students and community youth the opportunity to develop 21st century skills through enriching, technology-based learning,” said Jon Phillips, managing director, worldwide education, Dell. “At Dell we are proud to be involved in such significant projects and conversations and look forward to bringing access to more students around the world.”

* Follow Gadget on Twitter on @GadgetZA

Africa News

Smart grids needed for Africa’s utilities

Power utilities across Africa should rethink their business models and how they manage and monetise their assets to keep pace with the changing energy ecosystem, says COLIN BEANEY, Global Industry Director for Asset-intensive and Energy and Utilities at IFS.

Published

on

Africa’s abundant natural resources and urgent need for power mean that it is one of the most exciting and innovative energy markets in a world that is moving rapidly towards clean, renewable energy sources. The continent’s energy industry is taking new approaches to providing unserved and underserved communities with access to power, with an emphasis on smart technologies and greener energy sources.

Power systems are evolving from centralised, top-down systems as interest in off-grid technology grows among African businesses and consumers. And according to PwC, we will see installed power capacity rise from 2012’s 90GW to 380GW in 2040 in sub-Saharan Africa. Power utilities are needing to rethink their business models and how they manage and monetise their assets to keep pace with the changing energy ecosystem.

Energy and utilities providers are transforming from centralised supply companies to more distributed, bi-directional service providers. They can only achieve this through the evolution of “smart grids” where sensors and smart meters will be able to provide the consumer with a more granular level of detail of power usage. This shift from an energy supplier to “lifestyle provider” will require a much more dynamic and optimised approach to maintenance and field service.

African companies must thus embrace digital transformation as an imperative. This transformation begins by embracing enterprise asset management to improve asset utilisation. The subsequent steps are enhancing upstream and downstream supply chain management; resource optimisation; introducing enterprise operational intelligence; embracing new technologies such as the Internet of Things, machine learning, and predictive maintenance; and becoming a smart utility.

Embracing mobility to drive ROI

Getting it right is about putting in place an enterprise backbone that accommodates asset and project management, multinational languages and currencies, new energies and markets, visualisation of the entire value chain, and mobility apps. Mobile technologies that support the field workforce have a vital role to play in driving better ROI from utilities’ investments in enterprise asset management and enterprise resource planning solutions.

Today’s leading enterprise asset management solutions feature powerful functionality for mobile management of the complete workflow of work orders – from logging status changes and updates, from receiving and creating new orders to concluding the job and reporting time, material and expenses. Such solutions are easy to deploy and intuitive for end users to learn and use.

Importantly for organisations operating in parts of the continent with poor telecoms infrastructure, connectivity is not an issue. The solutions work offline and synchronises when network connectivity is available. Users can work on any device—laptops, tablets, and smartphones—commercial or ruggedised.

By ensuring that field technicians have easy access to information and processes, the mobile solution enables technicians and maintenance engineers to easily do the following tasks:

·         Create a new work order on the fly and log new opportunities

·         Access both historical and planned work information when requested

·         Permit customers to sign when the job is completed

·         Capture measurements and inspection notes on route work orders

·         Create new fault reports on routing

·         Facilitate documentation through photo capturing

·         Provide easy access to technical data and preventive actions.

The power of mobility allows the engineer to be the origin of all data capture on a service event. They can easily inquire on asset history, record parts used or parts needed for repair, record labour hours, and expenses as they occur, and any notes of repairs performed. When coupled with workforce management tools, such solutions unlock significant productivity gains for utilities who are trying to get the most from their workforce and assets.

Continue Reading

Africa News

How machine learning can save your life

Over 11000 people died during the 2014-2016 Ebola outbreak in West Africa.The virus hopped between Guinea, Leone, Nigeria and Liberia, before making its way to the UK and US. But what would have happened if analysis and machine learning stepped in to help solve the problem, asks ANESHAN RAMALOO of SAS.

Published

on

Over 11000 people died during the 2014-2016 Ebola outbreak in West Africa.The virus hopped between Guinea, Leone, Nigeria and Liberia, before making its way to the UK and US. But what would have happened if analysis and machine learning stepped in to help solve the problem, asks ANESHAN RAMALOO of SAS.

But what if we could have predicted the outbreak months before it happened, buying us time to take proactive measures to contain it and curb its spread?

With access to overwhelming volumes of data, the computational power needed to store and analyse this data in real time, and sophisticated algorithms that can find patterns in the data and alert authorities to health problems before they become, well, problems, pandemics don’t have to be as devastating as they have been in the past.

In fact, with advanced data analytics, we can better manage any disease – long-term, short-term or pandemic – resulting in better patient treatment, more efficient use of resources and cost savings.

It’s been done before.

By analysing data from social media, blogs, online forums and keyword searches, we were able to predict the 2012-2013 US flu season three months before the Center for Disease Control (CDC) issued its first official warning.

Imagine the impact if the same analytical power was applied across the entire healthcare spectrum – not only on a national and global level, but right down to the individual level.

Data evolution

In the past, health workers relied on manually intensive, paper-based systems to record infections and deaths during disease outbreaks. Not only was it easy for errors to slip through but because the data was anecdotal and historical, authorities did not get a complete understanding of the reach and impact of the outbreak.

During the Ebola outbreak, the CDC adopted a mobile data collection system that enabled health workers to instantly submit information to a database via text messages. This low-cost method of information gathering not only resulted in fewer errors but also allowed analysts to draw up detailed maps of population movements, which made it easier to understand how the disease was likely to spread, and where to set up treatment centres.

While this was certainly an improvement on the paper-based systems of old, the drawback was that mobile data was historic and did not provide researchers with the ability to track developments and population movements in real time.

Data-driven action

But mobile phones are just one source of data. Today, health authorities can overlay thousands of data sources – including social media, health and physician reports, keyword searches, media reports, transactional data from retailers and pharmacies, airline ticket sales, geospatial data and more – to not only better manage diseases and outbreaks when they do happen, but to see them coming months in advance – and what could happen if we don’t act on the information.

By mining structured and unstructured data, we can track the movements of infected populations and who they come into contact with; we can measure the success of containment policies, education campaigns and treatments – and what to do if they’re not working; we can determine the effect of weather and other environmental factors on the spread of diseases.

Never before have we been able to act on information to save lives, not just during pandemics but through better understanding and treatment of diseases.

Personalised treatment

Until now, standard treatments for diseases such as cancer and HIV have been applied to all patients, regardless of their unique profiles and with little understanding as to why some people respond well to certain treatments and others don’t.

But by analysing and creating ‘medical maps’ of individuals that take into account their anatomy, physiology, DNA, RNA and chemical composition, doctors can prescribe personalised treatments that have a greater chance of success.

There are many other benefits of data analysis in healthcare:

·        Personalised treatment can result in fewer hospital admissions and can produce faster results and better experiences for patients;

·        By better understanding the impact of lifestyle and diet on health, medical aid providers can educate their members with the aim of improving their health, which could result in cost savings for both the provider and the member;

·        Governments can use data to develop proactive approaches to protecting and promoting public health, to prioritise services and to find ways to cut costs so that they can provide healthcare to more citizens.

·        By sharing data and results from clinical trials and combining that data with academic, patient and industry data, medical researchers can better understand the genetics of viruses, why some strains are more deadly than others, and why some people are more resistant to viruses. This could spark innovation and generate new insights that ultimately improve treatment and outcomes.

AI and machine learning

As the use of intelligent algorithms, machine learning and natural language processing becomes more entrenched in advanced data analytics, technology will increasingly supplement the skills of humans to produce faster and more accurate medical diagnoses.

We’re already seeing successful applications of artificial intelligence (AI) in predicting relapse in leukaemia patients and in distinguishing between different types of cancer.

Machine learning can extract valuable insights from unstructured data like clinical notes and academic journals to provide even larger datasets that will transform the medical industry into a proactive front against diseases.

There are plenty of doomsday theories about how machines will supersede our intelligence and rise against us. But there aren’t enough stories about the potential of data analytics, AI and machine learning to supplement human skills and knowledge to drastically changes lives for the better – and even save them. Right now, it’s looking more likely that machines will actually help us to live longer – and I don’t know many people who would object to that.

 

  • ANESHAN RAMALOO, ‎Data Scientist and Senior Business Solutions Manager at SAS.
Continue Reading

Trending

Copyright © 2018 World Wide Worx